首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   0篇
航空   13篇
航天技术   28篇
航天   10篇
  2021年   1篇
  2019年   2篇
  2014年   2篇
  2013年   4篇
  2012年   1篇
  2011年   4篇
  2010年   2篇
  2009年   2篇
  2008年   5篇
  2007年   2篇
  2005年   2篇
  2004年   1篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1998年   5篇
  1996年   2篇
  1994年   2篇
  1992年   3篇
  1984年   1篇
  1983年   3篇
  1980年   1篇
  1971年   1篇
  1966年   1篇
排序方式: 共有51条查询结果,搜索用时 218 毫秒
31.
The balloon-borne very long baseline interferometry (VLBI) experiment is a technical feasibility study for performing radio interferometry in the stratosphere. The flight model has been developed. A balloon-borne VLBI station will be launched to establish interferometric fringes with ground-based VLBI stations distributed over the Japanese islands at an observing frequency of approximately 20?GHz as the first step. This paper describes the system design and development of a series of observing instruments and bus systems. In addition to the advantages of avoiding the atmospheric effects of absorption and fluctuation in high frequency radio observation, the mobility of a station can improve the sampling coverage (“uv-coverage”) by increasing the number of baselines by the number of ground-based counterparts for each observation day. This benefit cannot be obtained with conventional arrays that solely comprise ground-based stations. The balloon-borne VLBI can contribute to a future progress of research fields such as black holes by direct imaging.  相似文献   
32.
The general (nth order) phase-locked loop is analyzed, of which the amplitude is not constant. The input carrier signal is amplitude-modulated by wide-band stationary Gaussian noise, and the signal, superposed with the additive white stationary Gaussian noise, enters the nonlimited phase-locked loop. Under the above assumptions the loop can be shown to constitute an n-dimensional vector Markov process, so that the process satisfies the n-dimensional Fokker-Plank equation. The probability density function depends on the effective loop signal-to-noise ratio and the effective modulation power.  相似文献   
33.
The 53 kDa tumor suppressor protein p53 is generally thought to contribute to the genetic stability of cells and to protect cells from DNA damage through the activity of p53-centered signal transduction pathways. To clarify the effect of space radiation on the expression of p53-dependent regulated genes, gene expression profiles were compared between two human cultured lymphoblastoid cell lines: one line (TSCE5) has a wild-type p53 gene status, and the other line (WTK1) has a mutated p53 gene status. Frozen human lymphoblastoid cells were stored in a freezer in the International Space Station (ISS) for 133 days. Gene expression was analyzed using DNA chips after culturing the space samples for 6 h on the ground after their return from space. Ground control samples were also cultured for 6 h after being stored in a frozen state on the ground for the same time period that the frozen cells were in space. p53-Dependent gene expression was calculated from the ratio of the gene expression values in wild-type p53 cells and in mutated p53 cells. The expression of 50 p53-dependent genes was up-regulated, and the expression of 94 p53-dependent genes was down-regulated after spaceflight. These expression data identified genes which could be useful in advancing studies in basic space radiation biology. The biological meaning of these results is discussed from the aspect of gene functions in the up- and down-regulated genes after exposure to low doses of space radiation.  相似文献   
34.
he burst alert telescope (BAT) is one of three instruments on the Swift MIDEX spacecraft to study gamma-ray bursts (GRBs). The BAT first detects the GRB and localizes the burst direction to an accuracy of 1–4 arcmin within 20 s after the start of the event. The GRB trigger initiates an autonomous spacecraft slew to point the two narrow field-of-view (FOV) instruments at the burst location within 20–70 s so to make follow-up X-ray and optical observations. The BAT is a wide-FOV, coded-aperture instrument with a CdZnTe detector plane. The detector plane is composed of 32,768 pieces of CdZnTe (4×4×2 mm), and the coded-aperture mask is composed of ∼52,000 pieces of lead (5×5×1 mm) with a 1-m separation between mask and detector plane. The BAT operates over the 15–150 keV energy range with ∼7 keV resolution, a sensitivity of ∼10−8 erg s−1 cm−2, and a 1.4 sr (half-coded) FOV. We expect to detect > 100 GRBs/year for a 2-year mission. The BAT also performs an all-sky hard X-ray survey with a sensitivity of ∼2 m Crab (systematic limit) and it serves as a hard X-ray transient monitor.  相似文献   
35.
In this paper, we report searches for antihelium in cosmic rays using two recently flown magnetic rigidity spectrometers. BESS-TeV had extended rigidity with an MDR of 1.4 TV and had a flight duration of one day. BESS-Polar was optimized for collecting power. It was flown for 8.5 days and had an MDR of 240 GV. The former flight allows us to explore a previously unexplored rigidity band and the latter flight yields a factor of three improvement in the overall BESS limit. No antihelium candidate was found in the rigidity ranges of 1–500 GV, and 0.6–20 GV, among 7 × 104 events taken with BESS-TeV, and 8 × 106 events taken with BESS-Polar, respectively.  相似文献   
36.
The Balloon-borne Experiment with a Superconducting Spectrometer (BESS) was flown from Lynn Lake, Manitoba, Canada in August, 2000, during the maximum solar modulation period, with an average residual atmospheric overburden of 4.3 g/cm2. Precise spectral measurements of cosmic ray hydrogen isotopes from 0.178 GeV/n to 1.334 GeV/n were made during the 28.7 h of flight. This paper presents the measured energy spectra and their ratio, 2H/1H. The results are also compared with previous measurements and theoretical predictions.  相似文献   
37.
In 2004, Japan Aerospace Exploration Agency developed the engineered model of the Plant Experiment Unit and the Cell Biology Experiment Facility. The Plant Experiment Unit was designed to be installed in the Cell Biology Experiment Facility and to support the seed-to-seed life cycle experiment of Arabidopsis plants in space in the project named Space Seed. Ground-based experiments to test the Plant Experiment Unit showed that the unit needed further improvement of a system to control the water content of a seedbed using an infrared moisture analyzer and that it was difficult to keep the relative humidity inside the Plant Experiment Unit between 70 and 80% because the Cell Biology Experiment Facility had neither a ventilation system nor a dehumidifying system. Therefore, excess moisture inside the Cell Biology Experiment Facility was removed with desiccant bags containing calcium chloride. Eight flight models of the Plant Experiment Unit in which dry Arabidopsis seeds were fixed to the seedbed with gum arabic were launched to the International Space Station in the space shuttle STS-128 (17A) on August 28, 2009. Plant Experiment Unit were installed in the Cell Biology Experiment Facility with desiccant boxes, and then the Space Seed experiment was started in the Japanese Experiment Module, named Kibo, which was part of the International Space Station, on September 10, 2009 by watering the seedbed and terminated 2 months later on November 11, 2009. On April 19, 2010, the Arabidopsis plants harvested in Kibo were retrieved and brought back to Earth by the space shuttle mission STS-131 (19A). The present paper describes the Space Seed experiment with particular reference to the development of the Plant Experiment Unit and its actual performance in Kibo onboard the International Space Station. Downlinked images from Kibo showed that the seeds had started germinating 3 days after the initial watering. The plants continued growing, producing rosette leaves, inflorescence stems, flowers, and fruits in the Plant Experiment Unit. In addition, the senescence of rosette leaves was found to be delayed in microgravity.  相似文献   
38.
The Balloon-borne Experiment with a Superconducting Spectrometer (BESS) has been carried out to search for primordial antiparticles in cosmic rays. In ten flights from 1993 to 2004, it measured the cosmic-ray antiproton spectrum in the energy range 0.1–4.2 GeV at various solar activity conditions. It also searched for antideuterons and antihelium nuclei, and it made precise measurement of cosmic-ray particle spectra. The BESS program has been extended to long duration balloon (LDB) flights in Antarctica (BESS-Polar) with the goal of achieving unprecedented sensitivity in the search for primordial antiparticles. This report describes recent results from BESS and progress of the BESS-Polar program.  相似文献   
39.
40.
Pilot uncertainty in aircraft response under automatic flight control has triggered aircraft accidents/incidents in the past. This uncertainty compels a pilot to disengage autopilot and switch to manual control. However, the decision to disengage autopilot and when to do it can be difficult: especially if there is not enough time to monitor the cockpit displays, for instance while countering atmospheric turbulence. Against this background, we proposed the “human as a control module” architecture for harmonizing pilot and autopilot controls. The architecture blends pilot maneuver with autopilot control instead of switching between them when simultaneous inputs are given to the aircraft. By automatically adjusting pilot and autopilot control inputs, the architecture avoids overlaps of both control authorities and helps to circumvent the effect of conflicting actions. This paper applies the architecture to the situations of past aircraft incidents which had been caused by the transfer from autopilot control to pilot maneuver after encountering atmospheric turbulence. The effectiveness of the architecture is evaluated via simulation study for the specific incident examples. Furthermore, this paper extends the architecture with an Extended Kalman Filter (EKF) based observer and evaluates its robustness under errors in wind estimation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号