首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   0篇
航空   24篇
航天技术   4篇
航天   3篇
  2018年   1篇
  2012年   3篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2005年   1篇
  2003年   1篇
  2000年   1篇
  1998年   3篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1981年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1969年   2篇
  1966年   1篇
  1965年   1篇
  1962年   1篇
排序方式: 共有31条查询结果,搜索用时 312 毫秒
11.
We review some longstanding scientific mysteries related to solar magnetism, with final attention to the mystery of the “turbulent diffusion” essential for the theoretical α ω-dynamo that is believed to be the source of the magnetic fields of the Sun. Fundamental difficulties with the concept of turbulent diffusion of magnetic fields suggest that the solar dynamo problem needs to be reformulated. An alternative dynamo model is proposed, but it remains to be shown that the model can provide the quantitative aspects of the cyclic magnetic fields of the Sun.  相似文献   
12.
We describe the design, performance and scientific objectives of the NASA-funded ALICE instrument aboard the ESA Rosetta asteroid flyby/comet rendezvous mission. ALICE is a lightweight, low-power, and low-cost imaging spectrograph optimized for cometary far-ultraviolet (FUV) spectroscopy. It will be the first UV spectrograph to study a comet at close range. It is designed to obtain spatially-resolved spectra of Rosetta mission targets in the 700–2050 Å spectral band with a spectral resolution between 8 Å and 12 Å for extended sources that fill its ~0.05^ × 6.0^ field-of-view. ALICE employs an off-axis telescope feeding a 0.15-m normal incidence Rowland circle spectrograph with a toroidal concave holographic reflection grating. The microchannel plate detector utilizes dual solar-blind opaque photocathodes (KBr and CsI) and employs a two-dimensional delay-line readout array. The instrument is controlled by an internal microprocessor. During the prime Rosetta mission, ALICE will characterize comet 67P/Churyumov-Gerasimenko's coma, its nucleus, and nucleus/coma coupling; during cruise to the comet, ALICE will make observations of the mission's two asteroid flyby targets and of Mars, its moons, and of Earth's moon. ALICE has already successfully completed the in-flight commissioning phase and is operating well in flight. It has been characterized in flight with stellar flux calibrations, observations of the Moon during the first Earth fly-by, and observations of comet C/2002 T7 (LINEAR) in 2004 and comet 9P/Tempel 1 during the 2005 Deep Impact comet-collision observing campaign.  相似文献   
13.
A method of improving angular discrimination artificially in radar beacon systems, without going to extremely high frequencies of operation or using unreasonably large interrogator antennas, involves the use of a null-type antenna pattern superposed on a normal directional beam. The effective are over which replies are obtained is determined by an amplitude discriminator circuit within the beacon which compares the amplitude of the pulse signals received on the null pattern with those received via the directional beam. Only if the latter exceed the former by a predetermined amount does the beacon produce a reply. The method, which has been tried experimentally and its theory verified, produces an increase in traffic handling capacity, as well as improved angular resolution, by reducing unwanted triggering and, hence, clutter on the display and the over-interrogation of transponder beacons. An antenna is described which eliminates triggering on sidelobes by providing the proper current distribution to the radiating elements to cause the null pattern to cover the sidelobes of the normal beam. Triple-pulse amplitude discriminators have been built and tested in a double-pulse interrogation system. Some theoretical considerations and design curves and equations for use in designing nulltype antennas are given in the Appendix.  相似文献   
14.
A space mission to Jupiter and Saturn, and beyond, provides an opportunity to explore the low energy galactic cosmic rays, which are largely excluded from the inner solar system by the outward sweep of the magnetic fields in the solar wind. The low energy cosmic rays are believed to be responsible for much of the heating of the gaseous disk of the galaxy, so a measurement of their intensity will have far reaching effects on theories of the interstellar gas and the evolution of the galaxy. The nuclear abundances, and in particular the presence or absence of high Z nuclei, will give critical information on the proximity of cosmic ray sources.This is one of the publications by the Science Advisory Group.  相似文献   
15.
Team Tormenta fielded an autonomous vehicle in the DARPA Grand Challenge 2005. Limiting the complexity of the autonomous system design, construction, and testing was crucial in rapidly designing a cost-effective working system. This approach allowed Team Tormenta to field a competitive vehicle on a low budget competing in the qualification trials.  相似文献   
16.
Curiosity’s Mars Hand Lens Imager (MAHLI) Investigation   总被引:1,自引:0,他引:1  
The Mars Science Laboratory (MSL) Mars Hand Lens Imager (MAHLI) investigation will use a 2-megapixel color camera with a focusable macro lens aboard the rover, Curiosity, to investigate the stratigraphy and grain-scale texture, structure, mineralogy, and morphology of geologic materials in northwestern Gale crater. Of particular interest is the stratigraphic record of a ~5?km thick layered rock sequence exposed on the slopes of Aeolis Mons (also known as Mount Sharp). The instrument consists of three parts, a?camera head mounted on the turret at the end of a robotic arm, an electronics and data storage assembly located inside the rover body, and a calibration target mounted on the robotic arm shoulder azimuth actuator housing. MAHLI can acquire in-focus images at working distances from ~2.1?cm to infinity. At the minimum working distance, image pixel scale is ~14?μm per pixel and very coarse silt grains can be resolved. At the working distance of the Mars Exploration Rover Microscopic Imager cameras aboard Spirit and Opportunity, MAHLI’s resolution is comparable at ~30?μm per pixel. Onboard capabilities include autofocus, auto-exposure, sub-framing, video imaging, Bayer pattern color interpolation, lossy and lossless compression, focus merging of up to 8 focus stack images, white light and longwave ultraviolet (365 nm) illumination of nearby subjects, and 8 gigabytes of non-volatile memory data storage.  相似文献   
17.
A brief review is given of the current state of knowledge of millimeter-wave atmospheric propagation and clutter characteristics and the detection performance of two air-to-ground fire-control systems evaluated in terms of their ability to detect a 40-m2 target in the presence of atmospheric attenuation and three types of clutter. Generally, the 35-GHz system considered performed better in terms of signal-to-noise ratio performance and in signal-to-clutter ratio performance for light clutter. In heavy clutter, the 95-GHz system performed significantly better than the 35-GHz system. For 300-m altitude with refrozen snow clutter background, neither system developed a large enough signal-to-clutter radio to detect the target reliably  相似文献   
18.
This work describes the interpretation of THEMIS-derived thermal inertia data at the Eberswalde, Gale, Holden, and Mawrth Vallis Mars Science Laboratory (MSL) candidate landing sites and determines how thermophysical variations correspond to morphology and, when apparent, mineralogical diversity. At Eberswalde, the proportion of likely unconsolidated material relative to exposed bedrock or highly indurated surfaces controls the thermal inertia of a given region. At Gale, the majority of the landing site region has a moderate thermal inertia (250 to 410?J?m?2?K?1?s?1/2), which is likely an indurated surface mixed with unconsolidated materials. The primary difference between higher and moderate thermal inertia surfaces may be due to the amount of mantling material present. Within the mound of stratified material in Gale, layers are distinguished in the thermal inertia data; the MSL rover could be traversing through materials that are both thermophysically and compositionally diverse. The majority of the Holden ellipse has a thermal inertia of 340 to 475?J?m?2?K?1?s?1/2 and consists of bed forms with some consolidated material intermixed. Mawrth Vallis has a mean thermal inertia of 310?J?m?2?K?1?s?1/2 and a wide variety of materials is present contributing to the moderate thermal inertia surfaces, including a mixture of bedrock, indurated surfaces, bed forms, and unconsolidated fines. Phyllosilicates have been identified at all four candidate landing sites, and these clay-bearing units typically have a similar thermal inertia value (400 to 500?J?m?2?K?1?s?1/2), suggesting physical properties that are also similar.  相似文献   
19.
20.
Theoretical studies of the solar wind phenomenon   总被引:1,自引:1,他引:0  
This paper is a review of current theoretical topics concerning the solar wind. Broadly speaking the questions outstanding at the present time concern the loss of angular momentum to the sun, the origin of the fluctuations observed in the wind at the orbit of earth, conditions in the wind in regions yet unvisited by spacecraft (inside the orbit of Venus, beyond the orbit of Mars, and out of the plane of the ecliptic), conditions at the terminus of the wind, etc. The question of angular momentum loss is important in understanding the evolution of the sun to its present form with a slowly rotating surface. Evidence from both comet and spacecraft observations of the wind indicate that the rate at which angular momentum is being carried away by the solar wind is very large, of the order of 1031 dyne/cm in the gas flow and half as much by the interplanetary magnetic field. But theory cannot account for more than about 1030 dynes/cm in the gas without special assumptions.The fluctuations presently observed in the wind at the orbit of earth have scales ranging upward from 102 km. Their presence is puzzling because fluctuations with scales less than about 106 km are not expected to survive from the sun. Presumably, therefore, the fluctuations are generated by the velocity differences of more than 100 km/sec in the wind from different regions in the solar corona and by instabilities produced by the anisotropy of the electrons of the wind plasma.Conditions in the wind at places far removed from the orbit of earth can be inferred from the behavior of cosmic rays. The evidence is that the wind becomes relatively placid beyond about 5 AU, extending from there out to 30–300 AU without much small-scale turbulence. There are also some suggestions that the wind may perhaps be less turbulent toward the sun from 1 AU, and that the wind may be faster and more turbulent at higher solar latitudes. But the ambiguity of the situation does not permit a firm conclusion on this yet.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号