首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5178篇
  免费   35篇
  国内免费   16篇
航空   2191篇
航天技术   1624篇
综合类   25篇
航天   1389篇
  2022年   22篇
  2021年   52篇
  2019年   35篇
  2018年   227篇
  2017年   175篇
  2016年   145篇
  2015年   55篇
  2014年   149篇
  2013年   181篇
  2012年   170篇
  2011年   290篇
  2010年   229篇
  2009年   327篇
  2008年   322篇
  2007年   225篇
  2006年   111篇
  2005年   160篇
  2004年   144篇
  2003年   159篇
  2002年   113篇
  2001年   164篇
  2000年   63篇
  1999年   89篇
  1998年   99篇
  1997年   81篇
  1996年   74篇
  1995年   115篇
  1994年   84篇
  1993年   61篇
  1992年   80篇
  1991年   21篇
  1990年   33篇
  1989年   68篇
  1988年   28篇
  1987年   31篇
  1986年   27篇
  1985年   116篇
  1984年   96篇
  1983年   79篇
  1982年   73篇
  1981年   122篇
  1980年   55篇
  1979年   29篇
  1978年   30篇
  1977年   25篇
  1976年   28篇
  1975年   26篇
  1974年   22篇
  1972年   19篇
  1971年   17篇
排序方式: 共有5229条查询结果,搜索用时 234 毫秒
991.
The World Space Observatory Ultraviolet (WSO/UV) is a multi-national project grown out of the needs of the astronomical community to have future access to the UV range. WSO/UV consists of a single UV telescope with a primary mirror of 1.7 m diameter feeding the UV spectrometer and UV imagers. The spectrometer comprises three different spectrographs, two high-resolution echelle spectrographs (the High-Resolution Double-Echelle Spectrograph, HIRDES) and a low-dispersion long-slit instrument. Within HIRDES the 102–310 nm spectral band is split to feed two echelle spectrographs covering the UV range 174–310 nm and the vacuum-UV range 102–176 nm with high spectral resolution (R > 50,000). The technical concept is based on the heritage of two previous ORFEUS SPAS missions. The phase-B1 development activities are described in this paper considering performance aspects, design drivers, related trade-offs (mechanical concepts, material selection etc.) and a critical functional and environmental test verification approach. The current state of other WSO/UV scientific instruments (imagers) is also described.  相似文献   
992.
We consider some novel concepts for thermal properties experiments aboard lunar landers or rovers, that may lead to an improved understanding of both the structure of the lunar near surface layers and the lunar thermal history. The new instruments could be developed using the experience and heritage from recently developed systems, like the Rosetta Lander thermal conductivity experiment MUPUS and existing designs used for terrestrial measurements of thermal conductivity. We describe shortly the working principle of such sensors and the main challenges faced when using them in the airless regolith layers of the Moon or other airless bodies. In addition new concepts to create appropriate drill holes for thermal and other measurements in the lunar regolith are discussed.  相似文献   
993.
The study addresses interaction of bacteria and phages in the host–parasite system in batch and continuous cultures. The study system consists of the auxotrophic strain of BrevibacteriumBrevibacterium sp. 22L – and the bacteriophage of Brevibacterium sp., isolated from the soil by the enrichment method.
1.
Closed system. In the investigation of the relationship between the time of bacterial lysis and multiplicity of phage infection it has been found that at a lower phage amount per cell it takes a longer time for the lysis of the culture to become discernible. Another important factor determining cytolysis in liquid medium is the physiological state of bacterial population. Specific growth rate of bacteria at the moment of phage infection has been chosen as an indicator of the physiological state of bacteria. It has been shown that the shortest latent period and the largest output of the phage are observed during the logarithmic growth phase of bacteria grown under favorable nutrient conditions. In the stationary phase, bacterial cells become “a bad host” for the phage, whose reproduction rate decreases, and the lysis either slows down significantly or does not occur at all.  相似文献   
994.
995.
We summarize the high-resolution science that has been done on high redshift galaxies with Adaptive Optics (AO) on the world’s largest ground-based facilities and with the Hubble Space Telescope (HST). These facilities complement each other. Ground-based AO provides better light gathering power and in principle better resolution than HST, giving it the edge in high spatial resolution imaging and high resolution spectroscopy. HST produces higher quality, more stable PSF’s over larger field-of-views in a much darker sky-background than ground-based AO, and yields deeper wide-field images and low-resolution spectra than the ground. Faint galaxies have steadily decreasing sizes at fainter fluxes and higher redshifts, reflecting the hierarchical formation of galaxies over cosmic time. HST has imaged this process in great structural detail to z  6, and ground-based AO and spectroscopy has provided measurements of their masses and other physical properties with cosmic time. Last, we review how the 6.5 m James Webb Space Telescope (JWST) will measure First Light, reionization, and galaxy assembly in the near–mid-IR after 2013.  相似文献   
996.
PAMELA is a satellite-borne experiment that has been launched on June 15th, 2006. It is designed to make long duration measurements of cosmic radiation over an extended energy range. Specifically, PAMELA is able to measure the cosmic ray antiproton and positron spectra over the largest energy range ever achieved and will search for antinuclei with unprecedented sensitivity. Furthermore, it will measure the light nuclear component of cosmic rays and investigate phenomena connected with solar and earth physics. The apparatus consists of: a time of flight system, a magnetic spectrometer, an electromagnetic imaging calorimeter, a shower tail catcher scintillator, a neutron detector and an anticoincidence system. In this work a study of the PAMELA capabilities to detect electrons is presented. The Jovian magnetosphere is a powerful accelerator of electrons up to several tens of MeV as observed at first by Pioneer 10 spacecraft (1973). The propagation of Jovian electrons to Earth is affected by modulation due to Corotating Interaction Regions (CIR). Their flux at Earth is, moreover, modulated because every 13 months Earth and Jupiter are aligned along the average direction of the Parker spiral of the Interplanetary Magnetic Field.PAMELA will be able to measure the high energy tail of the Jovian electrons in the energy range from 50 up to 130 MeV. Moreover, it will be possible to extract the Jovian component reaccelerated at the solar wind termination shock (above 130 MeV up to 2 GeV) from the galactic flux.  相似文献   
997.
We developed a method of estimation of a relative amplitude dI/I of the total electron content (TEC) variations in the ionosphere as deduced from the data of the global GPS receivers network. To obtain statistically significant results we picked out three latitudinal belts provided in the Internet by the maximum number of GPS sites. They are high-latitudinal belt (50–80°N, 200–300°E; 59 sites), mid latitude belt (20–50°N, 200–300°E; 817 sites), and equatorial belt (±20°N, 0–360°E; 76 sites). The results of the analysis of the diurnal and latitudinal dependencies of dI/I and dI/I distribution probability for 52 days with different levels of geomagnetic activity are presented. It was found that on average the relative amplitude of the TEC variations varies within the range 0–10% proportionally to the value of the Kp geomagnetic index. In quiet conditions the relative amplitude dI/I of the TEC variations at night significantly exceeds the daytime relative amplitude. At high levels of magnetic field disturbances, the geomagnetic control of the amplitude of TEC variations at high and middle latitudes is much more significant than the regular diurnal variations. At the equatorial belt, on average, the amplitude of TEC variations in quiet and disturbed periods almost does not differ. The obtained results may be useful for development of the theory of ionospheric irregularities.  相似文献   
998.
Satellite-based limb occultation measurements are well suited for the detection and mapping of polar stratospheric clouds (PSCs) and cirrus clouds. PSCs are of fundamental importance for the formation of the Antarctic ozone hole that occurs every year since the early 1980s in Southern Hemisphere spring. Despite progress in the observation, modeling and understanding of PSCs in recent years, there are still important questions which remain to be resolved, e.g. PSC microphysics, composition, formation mechanisms and long-term changes in occurrence. In addition, it has recently become clear that cirrus clouds significantly affect the global energy balance and climate, due to their influence on atmospheric thermal structure.  相似文献   
999.
The space plasma environment usually contains charged dust grains. The grain charge is an important parameter determining its migration through the space, coagulation, formation of dust clouds and so on. The knowledge of its charge is thus one of the basic information we want to know. There are several emission processes leading to both positive and negative charges, among others photoemission, all kinds of secondary emissions, field emissions, etc. The present study is focused on a laboratory simulation of emissions caused by impacts by energetic ions. Our experiment is based on the Paul trap which gives us an opportunity to catch a single dust grain for several days inside the vacuum vessel and exposed it by electron/ion beams. This experimental approach allows us to separate an individual charging process. We have chosen spherically shaped gold grains and discussed the processes leading to the limitation of the grain charge. We suggested that the implantation of charging ions leads to deformations of the grain surface. The deformations enhance the local electric field strength that becomes sufficient for the field ionization.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号