首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   0篇
航空   16篇
航天技术   8篇
航天   6篇
  2021年   2篇
  2014年   1篇
  2013年   1篇
  2010年   2篇
  2009年   1篇
  2008年   4篇
  2007年   2篇
  2005年   1篇
  2003年   2篇
  2002年   1篇
  2000年   2篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1971年   1篇
  1968年   1篇
  1966年   1篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
21.
Deployable space structures are being built from thin-walled fiber-reinforced polymer composite materials due to their high specific strength, high specific stiffness, and designed bistability. However, the inherent viscoelastic behavior of the resin matrix can cause dimensional instability when the composite is stored under strain. The extended time of stowage between assembly and deployment in space can result in performance degradation and in the worst case, mission failure. In this study, the viscoelastic properties of candidate commercial polymers consisting of difunctional and tetrafunctional epoxies and thermoplastic and thermosetting polyimides were evaluated for deployable boom structures of solar sails. Stress relaxation master curves of the candidate polymers were used to predict the relaxation that would occur in 1 year at room temperature under relatively low strains of about 0.1%. A bismaleimide (BMI) showed less stress relaxation (about 20%) than the baseline novolac epoxy (about 50%). Carbon fiber composites fabricated with the BMI resin showed a 44% improvement in resistance to relaxation compared to the baseline epoxy composite.  相似文献   
22.
Interplanetary spacecraft navigation using pulsars   总被引:1,自引:0,他引:1  
We demonstrate how observations of pulsars can be used to help navigate a spacecraft travelling in the solar system. We make use of archival observations of millisecond pulsars from the Parkes radio telescope in order to demonstrate the effectiveness of the method and highlight issues, such as pulsar spin irregularities, which need to be accounted for. We show that observations of four millisecond pulsars every seven days using a realistic X-ray telescope on the spacecraft throughout a journey from Earth to Mars can lead to position determinations better than ∼20 km and velocity measurements with a precision of ∼0.1 ms−1.  相似文献   
23.
We describe a novel approach for determining the timing of the solar cycle and tracking its evolution relative to other cycles. This method also has predictive capability for forecasting the cycle “onset.” Based on current trends, we expect that Cycle 23 will be about 1 year longer than the previous two cycles.  相似文献   
24.
POES Companion is a small satellite that would carry an atmospheric sounding instrument identical to one on a nearby operational polar orbiting spacecraft. The spacing between the two satellites would be controlled and variable. The mission is designed to establish the upper bound on the distance between the two satellites within which data from the instruments are statistically equivalent, and further would demonstrate that two neighboring spacecraft can be managed safely and efficiently. POES Companion will validate new Companion options outlined in this paper that could substantially reduce costs attributable to satellite-based atmospheric sounders for both operational and research programs.  相似文献   
25.
26.
The Mercury Dual Imaging System on the MESSENGER Spacecraft   总被引:1,自引:0,他引:1  
The Mercury Dual Imaging System (MDIS) on the MESSENGER spacecraft will provide critical measurements tracing Mercury’s origin and evolution. MDIS consists of a monochrome narrow-angle camera (NAC) and a multispectral wide-angle camera (WAC). The NAC is a 1.5° field-of-view (FOV) off-axis reflector, coaligned with the WAC, a four-element refractor with a 10.5° FOV and 12-color filter wheel. The focal plane electronics of each camera are identical and use a 1,024×1,024 Atmel (Thomson) TH7888A charge-coupled device detector. Only one camera operates at a time, allowing them to share a common set of control electronics. The NAC and the WAC are mounted on a pivoting platform that provides a 90° field-of-regard, extending 40° sunward and 50° anti-sunward from the spacecraft +Z-axis—the boresight direction of most of MESSENGER’s instruments. Onboard data compression provides capabilities for pixel binning, remapping of 12-bit data into 8 bits, and lossless or lossy compression. MDIS will acquire four main data sets at Mercury during three flybys and the two-Mercury-solar-day nominal mission: a monochrome global image mosaic at near-zero emission angles and moderate incidence angles, a stereo-complement map at off-nadir geometry and near-identical lighting, multicolor images at low incidence angles, and targeted high-resolution images of key surface features. These data will be used to construct a global image base map, a digital terrain model, global maps of color properties, and mosaics of high-resolution image strips. Analysis of these data will provide information on Mercury’s impact history, tectonic processes, the composition and emplacement history of volcanic materials, and the thickness distribution and compositional variations of crustal materials. This paper summarizes MDIS’s science objectives and technical design, including the common payload design of the MDIS data processing units, as well as detailed results from ground and early flight calibrations and plans for Mercury image products to be generated from MDIS data.  相似文献   
27.
The construction of a solar sail from commercially available metallized film presents several challenges. The solar sail membrane is made by seaming together precut lengths of ultrathin metallized polymer film into the required geometry. This assembled sail membrane is then folded into a small stowage volume prior to launch. The sail membranes must have additional features for connecting to rigid structural elements (e.g., sail booms) and must be electrically grounded to the spacecraft bus to prevent charge build up. Space durability of the material and mechanical interfaces of the sail membrane assemblies will be critical for the success of any solar sail mission. In this study, interfaces of polymer/metal joints in a representative solar sail membrane assembly were tested to ensure that the adhesive interfaces and the fastening grommets could withstand the temperature range and expected loads required for mission success. Various adhesion methods, such as surface treatment, commercial adhesives, and fastening systems, were experimentally tested in order to determine the most suitable method of construction.  相似文献   
28.
Synthetic Aperture Imaging Radar and Moving Targets   总被引:7,自引:0,他引:7  
This paper considers the effects of slowly moving targets as they appear in the output of an airborne coherent side-looking synthetic aperture imaging radar. The image of a moving reflector is described, and two approaches to airborne moving target indication (AMTI) are summarized. It is shown that the effects of target movement are decreased as the radar scan rate is increased, and are increased as the (Doppler processed) compression ratio is increased.  相似文献   
29.
People use spatial and nonspatial information to structure memory for an environment. Two experiments explored interactions between spatial and social categories on map memory when mediated by retrieval (Experiment 1) and encoding (Experiment 2) demands. Participants studied a map depicting business locations (including proprietors' race). In Experiment 1, participants completed two memory tasks, one globally focused and the other locally focused. The global task compressed, while the local task expanded, within-category similarity. Furthermore, processing styles carried over to the subsequent task. Experiment 2 emphasized either the spatial or social category during encoding, which increased that category's weighting in memory. These results extend the work of Maddox, Rapp, Brion, and Taylor, suggesting that retrieval and encoding demands can shift how these categories affect spatial memory.  相似文献   
30.
Shine  Keith P. 《Space Science Reviews》2000,94(1-2):363-373
Our current understanding of mechanisms that are, or may be, acting to cause climate change over the past century is briefly reviewed, with an emphasis on those due to human activity. The paper discusses the general level of confidence in these estimates and areas of remaining uncertainty. The effects of increases in the so-called well-mixed greenhouse gases, and in particular carbon dioxide, appear to be the dominant mechanism. However, there are considerable uncertainties in our estimates of many other forcing mechanisms; those associated with the so-called indirect aerosol forcing (whereby changes in aerosols can impact on cloud properties) may be the most serious, as its climatic effect may be of a similar size as, but opposite sign to, that due to carbon dioxide. The possible role of volcanic eruptions as a natural climate change mechanism is also highlighted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号