首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
航空   18篇
航天技术   4篇
航天   7篇
  2013年   2篇
  2011年   2篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2000年   2篇
  1996年   1篇
  1992年   1篇
  1985年   2篇
  1982年   1篇
  1980年   1篇
  1970年   1篇
  1968年   3篇
  1965年   1篇
排序方式: 共有29条查询结果,搜索用时 31 毫秒
11.
Atmospheric erosion of CO2-rich Earth-size exoplanets due to coronal mass ejection (CME)-induced ion pick up within close-in habitable zones of active M-type dwarf stars is investigated. Since M stars are active at the X-ray and extreme ultraviolet radiation (XUV) wave-lengths over long periods of time, we have applied a thermal balance model at various XUV flux input values for simulating the thermospheric heating by photodissociation and ionization processes due to exothermic chemical reactions and cooling by the CO2 infrared radiation in the 15 microm band. Our study shows that intense XUV radiation of active M stars results in atmospheric expansion and extended exospheres. Using thermospheric neutral and ion densities calculated for various XUV fluxes, we applied a numerical test particle model for simulation of atmospheric ion pick up loss from an extended exosphere arising from its interaction with expected minimum and maximum CME plasma flows. Our results indicate that the Earth-like exoplanets that have no, or weak, magnetic moments may lose tens to hundreds of bars of atmospheric pressure, or even their whole atmospheres due to the CME-induced O ion pick up at orbital distances 相似文献   
12.
The HOPE mass spectrometer of the Radiation Belt Storm Probes (RBSP) mission (renamed the Van Allen Probes) is designed to measure the in situ plasma ion and electron fluxes over 4π sr at each RBSP spacecraft within the terrestrial radiation belts. The scientific goal is to understand the underlying physical processes that govern the radiation belt structure and dynamics. Spectral measurements for both ions and electrons are acquired over 1 eV to 50 keV in 36 log-spaced steps at an energy resolution ΔE FWHM/E≈15 %. The dominant ion species (H+, He+, and O+) of the magnetosphere are identified using foil-based time-of-flight (TOF) mass spectrometry with channel electron multiplier (CEM) detectors. Angular measurements are derived using five polar pixels coplanar with the spacecraft spin axis, and up to 16 azimuthal bins are acquired for each polar pixel over time as the spacecraft spins. Ion and electron measurements are acquired on alternate spacecraft spins. HOPE incorporates several new methods to minimize and monitor the background induced by penetrating particles in the harsh environment of the radiation belts. The absolute efficiencies of detection are continuously monitored, enabling precise, quantitative measurements of electron and ion fluxes and ion species abundances throughout the mission. We describe the engineering approaches for plasma measurements in the radiation belts and present summaries of HOPE measurement strategy and performance.  相似文献   
13.
Hispasat Advanced Generation 1 (HAG1) is the first satellite using the SGEO platform, which is under the development in the ESA Artes-11 program. Since the last presentation in the IAC 2007, a European industrial consortium led by OHB has completed the mission and spacecraft design. The platform Preliminary Design Review has been carried out in May 2008. The customer for the first mission is a commercial operator—Hispasat. The contract was signed in December 2008 and the satellite will be launched in 2012. To give confidence to the customer, SGEO platform will use up to date flight proven technologies. HAG1 carries 20/24 Ku-band and 3/5 Ka-band transponders to provide commercial services. Some innovative payload technologies will also be flown on board of HAG1 to gain in-orbit heritage. SGEO has also been selected as the baseline platform for the ESA Data Relay Satellite (EDRS). Phase-A study has just kicked off in January 2009. The targeted launch date is 2013. Heinrich Hertz will also use the SGEO platform. Heinrich Hertz is funded by the German Space Agency (DLR) and provides flight opportunities for technologies and components developed by the German Space Industry. With the HAG1 contract in hand, and EDRS and Heinrich Hertz in the line, OHB with its partners has the confidence that it will be able to speed up the product development of the SGEO platform for potential customers in the commercial market. This paper will first present the updated platform design and the status of the product development will be followed with the introduction of innovative payload technologies on board the first mission—HAG1 and ended with the mission concepts of EDRS and Heinrich Hertz missions.  相似文献   
14.
The Cassini Ultraviolet Imaging Spectrograph (UVIS) is part of the remote sensing payload of the Cassini orbiter spacecraft. UVIS has two spectrographic channels that provide images and spectra covering the ranges from 56 to 118 nm and 110 to 190 nm. A third optical path with a solar blind CsI photocathode is used for high signal-to-noise-ratio stellar occultations by rings and atmospheres. A separate Hydrogen Deuterium Absorption Cell measures the relative abundance of deuterium and hydrogen from their Lyman-α emission. The UVIS science objectives include investigation of the chemistry, aerosols, clouds, and energy balance of the Titan and Saturn atmospheres; neutrals in the Saturn magnetosphere; the deuterium-to-hydrogen (D/H) ratio for Titan and Saturn; icy satellite surface properties; and the structure and evolution of Saturn’s rings.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
15.
In view of the low H2O abundance in the present Venusian and Martian atmospheres several observations by spacecraft and studies suggest that both planets should have lost most of their water over the early active period of the young Sun. During the first Gyr after the Sun arrived at the Zero- Age-Main-Sequence high X-ray and EUV fluxes between 10 and 100 times that of the present Sun were responsible for much higher temperatures in the thermosphere-exosphere environments on both planets. By applying a diffusive-gravitational equilibrium and thermal balance model for investigating radiation impact on the early thermospheres by photodissociation and ionization processes, due to exothermic chemical reactions and cooling by CO2 IR emission in the 15μm band we found expanded thermospheres with exobase levels between about 200 km (present) and 2000 km (4.5 Gyr ago). The higher temperatures in the upper atmospheres of both planets could reach “blow-off” conditions for H atoms even at high CO2 mixing ratios of 96%. Lower CO2/N2 mixing ratio or higher contents of H2O vapor in the early atmospheres could have had a dramatic impact from the loss of atmosphere and water on both planets. The duration of this phase of high thermal loss rates essentially depended on the mixing ratios of CO2, N2, and H2O in the early atmospheres and could have lasted between about 150 and several hundred Myr.  相似文献   
16.
The solar system is apparently stratified with regard to the contents of volatile constituents, as judged from the rocky, volatile-poor inner solar system planets and meteorites and the huge volatile-rich outer planets. However, beyond this gross structure there is no evidence for a systematic increase of the volatiles' abundances with distance from the Sun. Although meteorites show comparatively large differences in volatile element contents they also differ in many other respects, such as Mg/Si-ratios, bulk Fe and refractory element contents. These variations reflect variations in the nebular environment from which meteorites formed. The various conditions of meteorite formation cannot, however, be related in a simple way to heliocentric distances. There are also no systematic variations in the chemistry of the inner planets Mercury, Venus, Earth, Moon, Mars, and including the fourth largest asteroid Vesta, that could be interpreted as a relationship between volatility and composition. Although Mars (as judged from the composition of Martian meteorites) is more oxidized and contains more volatile elements than Earth, this trend cannot be extrapolated to the dry volatile poor Vesta (sampled by HED meteorites) in the asteroid belt. If the Earth-Mars trend reflects global inner solar system gradients then Vesta must have formed inside Earth's orbit and moved out later to its present location. The quality of Mercury and Venus composition data is not sufficient to allow reliable extrapolation to distances closer to the Sun. Recent nebula models predict small temperature gradients in the inner solar system supporting the view that no large variations in volatile element contents of inner solar system materials are expected. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
17.
18.
From 1 January 1986 through 1 January 2008, GOES satellites recorded 170 solar proton events. For 169 of these events, we estimated effective and equivalent dose rates and doses of galactic cosmic radiation (GCR) and solar cosmic radiation (SCR), received by aircraft occupants on simulated high-latitude flights. Dose rate and dose estimates that follow are for altitudes 30, 40, 50, and 60 kft, in that order.  相似文献   
19.
The reasoning which led to the particular slot structure defined for the collision avoidance system specified by the Air Transportation Association Collision Avoidance System Technical Working Group is discussed. The objectives were to choose a slot length that would 1) minimize the probability of interference, 2) maximize the capacity of the information channel (as measured by the number of messages received in a unit of time). Interference can be manifested by the garbling of either the collision avoidance message or the synchronization signals.  相似文献   
20.
In this work, we evaluate the exploration of the Solar system by ad hoc wireless sensor networks (WSN), i.e., networks where all nodes (either moving or stationary) can both provide and relay data. The two aspects of self-organization and localization are the major challenges to achieve a reliable network for a variety of missions. We point out the diversity of environmental and operational constrains that WSN used for space exploration would face.We evaluate two groups of scenarios consisting in static or moving sensing nodes that can be either located on the ground or in the atmosphere of a Solar-system object. These scenarios enable collecting data simultaneously over a large surface or volume.We consider physical and chemical sensing of the atmosphere, surface and soil using such networks. Emerging technologies such as nodes localization techniques are reviewed. Finally, we compare the specific requirements of WSN for space exploration with those of WSN designed for terrestrial applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号