首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   194篇
  免费   0篇
  国内免费   1篇
航空   76篇
航天技术   36篇
综合类   2篇
航天   81篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   5篇
  2017年   2篇
  2015年   1篇
  2014年   9篇
  2013年   7篇
  2012年   9篇
  2011年   15篇
  2010年   9篇
  2009年   16篇
  2008年   6篇
  2007年   12篇
  2006年   11篇
  2005年   7篇
  2004年   8篇
  2003年   6篇
  2002年   4篇
  2001年   3篇
  2000年   4篇
  1999年   7篇
  1998年   3篇
  1996年   3篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   4篇
  1989年   1篇
  1987年   1篇
  1986年   3篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有195条查询结果,搜索用时 31 毫秒
181.
An essential part of increment preparation for the ISS is the training of the flight crews. Each international partner is responsible for the basic training of its own astronauts, where a basic knowledge is taught on space science and engineering, ISS systems and operations and general astronaut skills like flying, diving, survival, language, etc. The main parts of the ISS crew training are the Advanced Training, e.g., generic ISS operations; nominal and malfunction systems operations and emergencies, and the Increment-Specific Training, i.e., operations and tasks specific to a particular increment. The Advanced and Increment-Specific Training is multilateral training, i.e., each partner is training all ISS astronauts on its contributions to the ISS program. Consequently, ESA is responsible for the Basic Training of its own astronauts and the Advanced and Increment-Specific Training of all ISS crews after Columbus activation on Columbus Systems Operations, Automated Transfer Vehicle (ATV), and ESA payloads.

This paper gives an overview of the ESA ISS Training Program for Columbus Systems Operations and ATV, for which EADS Space Transportation GmbH is the prime contractor. The key training tasks, the training flow and the training facilities are presented.  相似文献   

182.
The MEAP (Mars Environment Analogue Platform) mission was to fly a stratospheric balloon on a semicircular trajectory around the North Pole in summer 2008. The balloon platform carried the high-resolution neutral gas mass spectrometer P-BACE (Polar Balloon Atmospheric Composition Experiment) as scientific payload. MEAP/P-BACE is a joint project between the Esrange Space Center, Sweden, the University of Bern, Switzerland and the Swedish Institute of Space Physics (IRF), Kiruna, Sweden. Mission objectives were to validate the platform for future long duration flights around the North pole, to validate the P-BACE instrument design for planetary mission applications (conditions in the Earth stratosphere are similar to the conditions at the Mars surface), to study variation of the stratospheric composition during the flight and to gain experience in balloon based mass spectrometry. All objectives were fulfilled.  相似文献   
183.
184.
The membrane-bound guanylyl cyclases A and B (GC-A/B), which are receptors for natriuretic peptides, are expressed in cancer cells including melanomas and may represent new anticancer targets. Here, we report down-regulation of GC-A/B expression in human metastatic melanoma cells at simulated weightlessness in comparison to 1g conditions, suggesting attenuation of metastatic potential in weightlessness.  相似文献   
185.
186.
The aim of this paper is to present the time profile of cosmic radiation exposure obtained by the Radiation Risk Radiometer-Dosimeter during the EXPOSE-E mission in the European Technology Exposure Facility on the International Space Station's Columbus module. Another aim is to make the obtained results available to other EXPOSE-E teams for use in their data analysis. Radiation Risk Radiometer-Dosimeter is a low-mass and small-dimension automatic device that measures solar radiation in four channels and cosmic ionizing radiation as well. The main results of the present study include the following: (1) three different radiation sources were detected and quantified-galactic cosmic rays (GCR), energetic protons from the South Atlantic Anomaly (SAA) region of the inner radiation belt, and energetic electrons from the outer radiation belt (ORB); (2) the highest daily averaged absorbed dose rate of 426 μGy d(-1) came from SAA protons; (3) GCR delivered a much smaller daily absorbed dose rate of 91.1 μGy d(-1), and the ORB source delivered only 8.6 μGy d(-1). The analysis of the UV and temperature data is a subject of another article (Schuster et al., 2012 ).  相似文献   
187.
The Lunar Orbiter Laser Altimeter (LOLA) is an instrument on the payload of NASA’s Lunar Reconnaissance Orbiter spacecraft (LRO) (Chin et al., in Space Sci. Rev. 129:391–419, 2007). The instrument is designed to measure the shape of the Moon by measuring precisely the range from the spacecraft to the lunar surface, and incorporating precision orbit determination of LRO, referencing surface ranges to the Moon’s center of mass. LOLA has 5 beams and operates at 28 Hz, with a nominal accuracy of 10 cm. Its primary objective is to produce a global geodetic grid for the Moon to which all other observations can be precisely referenced.  相似文献   
188.
The LISA Mission (Laser Interferometer Space Antenna) is currently under mission formulation with a launch date planned in 2020. The purpose of the mission is the observation of gravitational waves at frequencies between 0.1 mHz and 1 Hz by measuring distance fluctuations between inertial reference points, represented by cubic proof masses. In order to provide a sufficient sensitivity of the instrument, distance fluctuations between two inertial reference points must be measured with a strain accuracy of around 10?20 Hz?1/2. This is achieved by setting up a laser interferometer with a base-length of 5?106 km and a path-length measurement noise in the order of 10 pm?Hz?1/2. For a correct evaluation of the data on the ground, it is essential that the science data telemetry preserves all required frequency domain information. That is, any on-board data-processing and down-sampling must be done with great care in order not to introduce aliasing or other artifacts into the data stream. As an additional complication, most of the optical metrology data is dominated by laser phase noise which is about eight orders of magnitude larger than the required instrument sensitivity. However, by applying a method called “time-delayed interferometry” during the ground data processing, this laser phase noise can be eliminated from the data. This method has already been demonstrated in a detailed simulation environment, but it requires a very careful filtering, synchronization, and interpolation of the individual data streams. Last but not least, a calibration of system parameters is necessary in many areas of the LISA measurement system. The system design must therefore ensure that all data required for these calibrations is available on-ground in a quality that allows a successful computation of the calibration coefficients within a reasonable time-frame. The data streams do not only include data from the optical metrology system, but also from the drag-free and attitude control system which are used to derive other information, such as the charge state of the proof mass. This yields a strong coupling between the different disciplines since data that is only used for housekeeping purposes in other missions becomes an essential part of the science data stream for the LISA mission. This paper gives an overview of the LISA measurement and data-processing chain. It highlights the most challenging areas that have been identified so far and describes the intended solution methods.  相似文献   
189.
Peter Creola 《Space Policy》1991,7(4):289-294
This article looks at the issues facing the ESA ministerial meeting in November 1991. The background to European space collaboration is outlined and the current position on the Hermes and Columbus programmes is described. The financial overrun of the Hermes programme is referred to and set in the context of the overall financial problems facing the ministers. Finally, possible areas of saving are highlighted.  相似文献   
190.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号