首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   0篇
航空   15篇
航天技术   15篇
航天   22篇
  2021年   6篇
  2019年   1篇
  2018年   1篇
  2014年   5篇
  2011年   11篇
  2010年   1篇
  2009年   4篇
  2003年   2篇
  1999年   1篇
  1993年   1篇
  1991年   1篇
  1989年   2篇
  1987年   1篇
  1985年   2篇
  1983年   3篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
排序方式: 共有52条查询结果,搜索用时 218 毫秒
11.
The maximum terminal velocity problem of the classical propulsion is extended to a relativistic rocket assumed broken down into active mass, inert mass and gross payload. A fraction of the active mass is converted into energy shared between inert mass and active mass residual. Significant effects are considered. State and co-state equations are carried out to find the exhaust speed optimal profile.A first major result consists of a critical value of inert mass. Beyond it both true and effective jet speeds increase with time. Below it the true jet speed profile is reversed. At criticality, the best control consists of both velocities constant in time.A second meaningful result is represented by an interval of inert mass outside which no optimal control exists. Numerical results are discussed with particular emphasis to current concepts of antimatter propulsion.  相似文献   
12.
Solar sails have much attracted the interest of the scientific community as an advanced low-thrust propulsion means capable of promoting the reduction of mission costs and the feasibility of missions that are not practically accessible via conventional propulsion because of their large ΔV requirements. To reduce the overall flight time, a given mission is usually analyzed in the framework of a minimum time control problem, with the employment of a continuous steering law. The aim of this paper is to investigate the performance achievable with a piecewise-constant steering law whose aim is to substantially reduce the complex task of reorienting the sail over the whole mission. Unlike previous studies based on direct approaches, here we use an indirect method to optimally select the sail angle within a set of prescribed values. The corresponding steering law translates the results available for continuous controls to the discrete case, and is able of producing trajectories that are competitive in performance with the optimum variable direction program.  相似文献   
13.
The behavior of the oscillating limiter (OL) driven by FM signals is surveyed, and its performance with signal corrupted by noise is investigated. For high values of the carrier-to-noise ratio (CNR), if the frequency deviation of the signal is small in comparison with the locking range of the OL, it is calculated, and experimentally verified, that a system OL discriminator is equivalent to a system bandpass limiter discriminator followed by a linear network whose frequency response has been specified. When the frequency deviation is not so small, the baseband noise power increases with it; a formula is given that allows the calculation of this power when the signal is such that the circuit operates in quasistationary fashion. For low values of the CNR, a mathematical analysis presents unsurmountable difficulties. However, heuristic argumentation leads to an interpretation of the operation of the OL in the threshold region, which is substantiated by an experimental investigation. The results of this paper enable a comparative evaluation of a system OL discriminator and a system bandpass limiter discriminator, to which the former reduces when the feedback path in the OL is open.  相似文献   
14.
The aim of this paper is to quantify the performance of an Electric Solar Wind Sail for accomplishing flyby missions toward one of the two orbital nodes of a near-Earth asteroid. Assuming a simplified, two-dimensional mission scenario, a preliminary mission analysis has been conducted involving the whole known population of those asteroids at the beginning of the 2013 year. The analysis of each mission scenario has been performed within an optimal framework, by calculating the minimum-time trajectory required to reach each orbital node of the target asteroid. A considerable amount of simulation data have been collected, using the spacecraft characteristic acceleration as a parameter to quantify the Electric Solar Wind Sail propulsive performance. The minimum time trajectory exhibits a different structure, which may or may not include a solar wind assist maneuver, depending both on the Sun-node distance and the value of the spacecraft characteristic acceleration. Simulations show that over 60% of near-Earth asteroids can be reached with a total mission time less than 100 days, whereas the entire population can be reached in less than 10 months with a spacecraft characteristic acceleration of 1 mm/s2.  相似文献   
15.
This paper discusses the generation, stability, and control of artificial equilibrium points for a solar balloon spacecraft in the α Centauri A and B binary star system. The continuous propulsive acceleration provided by a solar balloon is shown to be able to modify the position of the (classical) Lagrangian equilibrium points of the three-body system on a locus whose geometrical form is known analytically. A linear stability analysis reveals that the new generated equilibrium points are usually unstable, but part of them can be stabilized with a simple feedback control logic.  相似文献   
16.
We present experimental results in order to understand the physico-chemical effects induced by fast ions irradiating sulfur bearing molecules. The experiments are relevant both to Solar System objects (icy satellites, comets, TNOs) and icy mantles on grains in the interstellar medium. Here we concentrate on the application to the Galilean moons that are exposed to high energetic particle fluxes in the jovian magnetosphere.  相似文献   
17.
The Greek astronomic calculator, discovered in the depth of the sea in a naval wreckage of the 1st century B.C. in front of the island of Antikythera, is the most amazing among the archaeological discoveries of last century. The mechanism immediately appeared like a device out of its time. After years of study this devise is still provoking a discussion between scientists and archaeologists because of the complexity and the modernity of the scientific knowledge the work presupposes. Its epicyclical gearings show the high level of the scientific culture reached in that period of history.  相似文献   
18.
The optimization of a solar sail-based orbital transfer amounts to searching for the control law that minimizes the flight time. In this context, the optimal trajectory is usually determined assuming constant solar properties. However, the total solar irradiance undergoes both long-term (solar cycles) and short-term variations, and recent analyses have shown that this may have an impact on solar sailing for missions requiring an accurate thrust modulation. In this regard, the paper discusses a strategy to overcome such an issue by suitably adjusting the thrust vector in order to track a reference, optimal, transfer trajectory. In particular, the sail propulsive acceleration magnitude is modified by means of a set of electrochromic material panels, which change their optical properties on application of a suitable electric voltage. The proposed control law is validated with a set of numerical simulations that involve a classical Earth-Mars, orbit-to-orbit, heliocentric transfer.  相似文献   
19.
The interaction between electromagnetic waves and matter is the working principle of a photon-propelled spacecraft, which extracts momentum from the solar radiation to obtain a propulsive acceleration. An example is offered by solar sails, which use a thin membrane to reflect the impinging photons. The solar radiation momentum may actually be transferred to matter by means of various optical phenomena, such as absorption, emission, or refraction. This paper deals with the novel concept of a refractive sail, through which the Sun’s light is refracted by crossing a film made of polymeric micro-prisms. The main feature of a refractive sail is to give a large transverse component of thrust even when the sail nominal plane is orthogonal to the Sun-spacecraft line. Starting from the recent literature results, this paper proposes a semi-analytical thrust model that estimates the characteristics of the propulsive acceleration vector as a function of the sail attitude angles. Such a mathematical model is then used to analyze a simplified Earth-Mars and Earth-Venus interplanetary transfer within an optimal framework.  相似文献   
20.
The heliocentric orbital dynamics of a spacecraft propelled by a solar sail is affected by some uncertainty sources, including possible inaccuracies in the measurement of the sail film optical properties. Moreover, the solar radiation pressure, which is responsible for the solar sail propulsive acceleration generation, is not time-constant and is subject to fluctuations that are basically unpredictable and superimposed to the well-known 11-year solar activity cycle. In this context, this work aims at investigating the effects of such uncertainties on the actual heliocentric trajectory of a solar sail by means of stochastic simulations performed with a generalized polynomial chaos procedure. The numerical results give an estimation of their impact on the actual heliocentric trajectory and identify whether some of the uncertainty sources are more relevant than others. This is a fundamental information for directing more accurate theoretical and experimental efforts toward the most important parameters, in order to obtain an accurate knowledge of the solar sail thrust vector characteristics and, eventually, of the spacecraft heliocentric position.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号