首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
航空   12篇
航天技术   3篇
航天   3篇
  2018年   5篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2012年   2篇
  2011年   1篇
  2009年   1篇
  2001年   2篇
  1996年   3篇
  1989年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
11.
Massive stars, at least \(\sim10\) times more massive than the Sun, have two key properties that make them the main drivers of evolution of star clusters, galaxies, and the Universe as a whole. On the one hand, the outer layers of massive stars are so hot that they produce most of the ionizing ultraviolet radiation of galaxies; in fact, the first massive stars helped to re-ionize the Universe after its Dark Ages. Another important property of massive stars are the strong stellar winds and outflows they produce. This mass loss, and finally the explosion of a massive star as a supernova or a gamma-ray burst, provide a significant input of mechanical and radiative energy into the interstellar space. These two properties together make massive stars one of the most important cosmic engines: they trigger the star formation and enrich the interstellar medium with heavy elements, that ultimately leads to formation of Earth-like rocky planets and the development of complex life. The study of massive star winds is thus a truly multidisciplinary field and has a wide impact on different areas of astronomy.In recent years observational and theoretical evidences have been growing that these winds are not smooth and homogeneous as previously assumed, but rather populated by dense “clumps”. The presence of these structures dramatically affects the mass loss rates derived from the study of stellar winds. Clump properties in isolated stars are nowadays inferred mostly through indirect methods (i.e., spectroscopic observations of line profiles in various wavelength regimes, and their analysis based on tailored, inhomogeneous wind models). The limited characterization of the clump physical properties (mass, size) obtained so far have led to large uncertainties in the mass loss rates from massive stars. Such uncertainties limit our understanding of the role of massive star winds in galactic and cosmic evolution.Supergiant high mass X-ray binaries (SgXBs) are among the brightest X-ray sources in the sky. A large number of them consist of a neutron star accreting from the wind of a massive companion and producing a powerful X-ray source. The characteristics of the stellar wind together with the complex interactions between the compact object and the donor star determine the observed X-ray output from all these systems. Consequently, the use of SgXBs for studies of massive stars is only possible when the physics of the stellar winds, the compact objects, and accretion mechanisms are combined together and confronted with observations.This detailed review summarises the current knowledge on the theory and observations of winds from massive stars, as well as on observations and accretion processes in wind-fed high mass X-ray binaries. The aim is to combine in the near future all available theoretical diagnostics and observational measurements to achieve a unified picture of massive star winds in isolated objects and in binary systems.  相似文献   
12.
SSETO is the result of a phase-A study in context of the small satellite program of the University of Stuttgart that demonstrates the capability of a university institute to build a small satellite with a budget of 5 million Euro. The satellite will be capable of observing exoplanets in a Neptune–Earth scale and obtaining data of interstellar dust. Due to a system failure of NASA?s Kepler mission, there is currently (October 2013) a lack of satellites searching for exoplanets. This paper details the design of subsystems and payload, as well as the required test tasks in accordance with the mission profile at a conceptional level. The costs for standard spacecraft testing and integration tasks are included, but not those of launch, ground support, operations and engineer working hours.  相似文献   
13.
The nonthermal particle production in contemporary starburst galaxies and in galaxy clusters is estimated from the Supernova rate, the iron content, and an evaluation of the dynamical processes which characterize these objects. The primary energy derives from SN explosions of massive stars. The nonthermal energy is transformed by various secondary processes, like acceleration of particles by Supernova Remnants as well as diffusion and/or convection in galactic winds. If convection dominates, the energy spectrum of nonthermal particles will remain hard. At greater distances from the galaxy almost the entire enthalpy of thermal gas and Cosmic Rays will be converted into wind kinetic energy, implying a fatal adiabatic energy loss for the nonthermal component. If this wind is strong enough then it will end in a strong termination shock, producing a new generation of nonthermal particles which are subsequently released without significant adiabatic losses into the external medium. In clusters of galaxies this should only be the case for early type galaxies, in agreement with observations. Clusters should also accumulate their nonthermal component over their entire history and energize it by gravitational contraction. The pion decay -ray fluxes of nearby contemporary starburst galaxies is quite small. However rich clusters should be extended sources of very high energy -rays, detectable by the next generation of systems of air Cherenkov telescopes. Such observations will provide an independent empirical method to investigate these objects and their cosmological history.  相似文献   
14.
We have developed the space suit simulator Aouda.X, which is capable of reproducing the physical and sensory limitations a flight-worthy suit would have on Mars. Based upon a Hard-Upper-Torso design, it has an advanced human-machine interface and a sensory network connected to an On-Board Data Handling system to increase the situational awareness in the field. Although the suit simulator is not pressurized, the physical forces that lead to a reduced working envelope and physical performance are reproduced with a calibrated exoskeleton. This allows us to simulate various pressure regimes from 0.3-1 bar. Aouda.X has been tested in several laboratory and field settings, including sterile sampling at 2800 m altitude inside a glacial ice cave and a cryochamber at -110°C, and subsurface tests in connection with geophysical instrumentation relevant to astrobiology, including ground-penetrating radar, geoacoustics, and drilling. The communication subsystem allows for a direct interaction with remote science teams via telemetry from a mission control center. Aouda.X as such is a versatile experimental platform for studying Mars exploration activities in a high-fidelity Mars analog environment with a focus on astrobiology and operations research that has been optimized to reduce the amount of biological cross contamination. We report on the performance envelope of the Aouda.X system and its operational limitations.  相似文献   
15.
16.
17.
18.
Flying Laptop is the first small satellite developed by the Institute of Space Systems at the Universität Stuttgart. It is a test bed for an on-board computer with a reconfigurable, redundant and self-controlling high computational ability based on the field programmable gate arrays (FPGAs). This Technical Note presents the operational concept and the on-board payload data processing of the satellite. The designed operational concept of Flying Laptop enables the achievement of mission goals such as technical demonstration, scientific Earth observation, and the payload data processing methods. All these capabilities expand its scientific usage and enable new possibilities for real-time applications. Its hierarchical architecture of the operational modes of subsystems and modules are developed in a state-machine diagram and tested by means of MathWorks Simulink-/Stateflow Toolbox. Furthermore, the concept of the on-board payload data processing and its implementation and possible applications are described.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号