首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   609篇
  免费   189篇
  国内免费   72篇
航空   514篇
航天技术   103篇
综合类   48篇
航天   205篇
  2024年   8篇
  2023年   14篇
  2022年   60篇
  2021年   54篇
  2020年   31篇
  2019年   28篇
  2018年   34篇
  2017年   45篇
  2016年   29篇
  2015年   42篇
  2014年   26篇
  2013年   33篇
  2012年   41篇
  2011年   46篇
  2010年   42篇
  2009年   49篇
  2008年   35篇
  2007年   43篇
  2006年   46篇
  2005年   37篇
  2004年   32篇
  2003年   27篇
  2002年   29篇
  2001年   10篇
  2000年   21篇
  1999年   7篇
  1997年   1篇
排序方式: 共有870条查询结果,搜索用时 15 毫秒
131.
陈密  房晓龙  朱荻 《航空学报》2019,40(8):422781-422781
航空航天难加工材料直纹面构件的高精度高表面完整性加工已经成为制造领域普遍关注和亟需解决的难题,电解线切割加工在高表面完整性要求加工场合上具有原理性优势。建立脉冲电流电解线切割加工模型,分析了工件厚度变化带来的影响。试验结果表明:随着工件厚度增加,电解液电阻减小,工件两端极间电压减小,加工缝宽变窄;双电层时间常数增大,脉宽时间内充电所能达到的电位降低,有效加工时间变短,平均电流密度较低;脉冲频率大于20 kHz时,最大进给速度随频率增加而快速减小,低于20 kHz时,最大加工速度差别较小。最后,采用脉冲频率20 kHz,以进给速度4 μm/s稳定加工出20 mm厚榫头/榫槽结构,表面粗糙度约为0.449 4 μm,表面质量、加工效率明显高于100 kHz加工效果。  相似文献   
132.
为研究小推力高室压NTO/MMH(四氧化二氮/甲基肼)火箭发动机实验系统管路流阻特性,对管路流阻理论、冷流实验及点火实验进行对比分析研究.通过管路介质流动能量损失计算,建立NTO/MMH管路流阻特性理论模型.开展无水乙醇冷流实验及NTO/MMH小推力高室压火箭发动机点火实验,以最小二乘法确定流阻特性实验拟合公式.与冷流实验结果相比,无水乙醇流量分别为0.10~0.40kg/s,0.09~0.36kg/s时,NTO/MMH管路理论流阻平均误差分别为5.42%,3.67%;与点火实验结果相比,真实推进剂流量分别为0.39~0.47kg/s,0.26~0.31kg/s时,NTO/MMH管路理论流阻平均误差分别为2.44%,2.47%,基于冷流实验预测的流阻平均误差分别为5.74%,3.46%,NTO流量为0.47~0.51kg/s(不含0.47kg/s)时,管路理论与冷流实验预测的流阻平均误差分别为16.56%,9.73%.实验与分析结果可应用于小推力高室压NTO/MMH发动机点火实验,并为实验系统设计提供必要支持.   相似文献   
133.
在双级旋流多点喷射直接混合(TAMDIM)高温升燃烧室单头部试验件上进行了燃烧效率试验,对比了两种不同主副级喉道间距尺寸下的慢车主、副分级供油方案及副油路单独供油方案的燃烧效率,分析了不同主、副级当量比(副油路供油比例分别为40%,56%,65%,100%)及喉道间距对燃烧效率的影响.试验表明:主副级采用分级供油策略时,喉道间距对燃烧效率有显著影响,喉道间距设计为19.3mm,副油路供油比例控制在40%~56%,可以获得比单独副油路供油更好的燃烧效率.在扇形试验件上进行了试验验证,进一步验证了慢车分级供油策略在TAMDIM高温升燃烧室上的可行性.   相似文献   
134.
机身壁板是飞机结构设计的重要承载组件,轻量化、高效率、共通性设计及优化是民机设计关注的重点。首先提出一种耦合ABAQUS的Buckle分析及ISIGHT优化的设计方法,利用自编子程序获取ABAQUS屈曲特征值,将特征值输入ISIGHT中计算临界屈曲载荷,同步更新变量参数及ABAQUS文件并提交计算,迭代分析直至优化流程结束。采用上述方法考虑轴向压缩载荷情况,以壁板整体重量最小为优化目标,疲劳应力值为约束条件,对单曲度金属机身壁板的蒙皮厚度,长桁数量及长桁截面厚度等几何参数进行优化。在满足壁板结构承载能力及总重量最小条件下,综合考虑结构载重比,临界应力及壁板加筋比,对比分析出一组最优参数,并与工程算法结果对比吻合程度较好,两者相对误差为3.73%。该优化思路实现FEA平台与优化工作一体化,可用于复合材料壁板设计及结构件减重优化工作,一定程度上可缩短零组件设计周期。  相似文献   
135.
凹腔/支板结构亚燃冲压燃烧室性能   总被引:2,自引:1,他引:2  
为了避免基于凹腔火焰稳定器的亚燃冲压燃烧室壁面喷注时燃料与主流空气掺混非均匀性问题和提高燃烧室的性能,提出在亚燃冲压燃烧室中使用支板喷注代替壁面喷注的方案,数值模拟了凹腔/支板结构亚燃冲压燃烧室中燃料分布及流场结构,并分析了支板结构对燃料空气混合及燃烧室性能的影响。研究表明:支板虽然使燃烧室出口的总压恢复系数相对于壁面喷注方式下的降低了63%,但能使燃料均匀分布于整个流道内,增强了燃料与空气掺混,使燃烧室出口的混合效率和燃烧效率分别提高了21.4%和20.5%。燃烧效率的提高弥补了采用支板导致的燃烧室内气流的额外总压损失所带来的机械能损失,使得支板喷注时燃烧室出口的比冲提高了39.6%。因此,在亚燃冲压燃烧室中设置凹腔/支板结构,有利于提高燃烧室整体性能。   相似文献   
136.
微小整体叶轮作为微型发动机的重要组成部分,其加工质量直接影响微型发动机的使用性能。针对微小整体式复杂叶轮流道狭窄、叶片扭曲大和长厚比大等特点,开展了微小复杂扭曲整体式叶轮五轴联动微细铣削加工方法研究。针对微小叶轮加工过程极易发生变形、过切和碰撞干涉等问题,对微小叶轮的加工过程进行工艺规划,建立了微小叶轮流道加工刀具选择的约束方程,计算出叶轮加工刀具的最大理论直径。通过CAM软件对叶轮进行切削仿真,验证了刀具选择和工艺规划的正确性。通过五轴联动微细铣削试验,得到了具有6个直径10mm的叶片、叶片最小厚度0.15mm、叶片最小相邻间距0.58mm的7075铝合金微小整体叶轮。  相似文献   
137.
针栓式喷注器锥形液膜破碎特性试验   总被引:4,自引:2,他引:4  
采用高速摄影获得了针栓式喷注器在不同喷注压降和结构参数下的表面波破碎图像,测量了锥形液膜的破碎长度和破碎时间,研究了变工况时液膜破碎长度和破碎时间的变化规律.试验结果表明:在喷注压降不变的条件下,针栓式喷注器能够实现流量的线性调节.针栓式喷注器设计时,在合理的推进剂动量比范围内,狭缝宽度应尽量取小.液膜在低工况时破碎得更快.液膜破碎长度和破碎时间均随喷注压降的增加而减小.   相似文献   
138.
李腾  方蜀州  刘旭辉  马红鹏 《推进技术》2016,37(12):2385-2393
为实现固体微推力器工作过程的一体化模拟,基于Fluent计算软件的二次开发功能(UDF)和简化化学动力学模型,实现了固体推进剂的二维气-凝相绝热微尺度燃烧模型的建立,该模型针对固体微推力器所用双基推进剂,包含两步凝相反应和五步气相反应,燃速、推进剂表面温度和组分质量分数基于燃面物理特性计算得到,并考虑了粘性作用对气相和凝相反应的影响。针对0.5MPa,1.0MPa,2.0MPa和5.1MPa四种工况进行了计算,结果表明,高压工作环境下出现发光火焰区,且随表面压力增大而逐渐靠近壁面,凝相反应区厚度和嘶嘶区、暗区主要反应物在燃面的质量分数随推进剂表面压力增大而减小。对称面处推进剂燃速,推进剂表面温度和气相火焰结构与实验结果基本一致。由于壁面附近较高的粘性作用,气相火焰在壁面位置更加靠近推进剂燃面,并导致壁面位置推进剂燃速高于对称面位置。该模型实现了二维环境下考虑分步凝相反应的推进剂绝热燃烧模型的一体化计算,较好地拓展了原模型的应用范围。  相似文献   
139.
利用Simulink/Labview建立民用客机液压系统告警逻辑模型,通过注入顶层定义的根源故障获得可视化告警信息指示,符合设计分析结果,且具有故障叠加告警显示等优点,为验证复杂系统集成中面临的根源派生故障告警信息显示抑制和排序功能提供一种有意义的方法。  相似文献   
140.
吴中野  方祥军 《推进技术》2018,39(2):269-276
为了探索变几何涡轮气动设计方案,导向器与动叶均采用厚前缘与后加载型叶片设计以及动叶进口负攻角设计。为了提高涡轮输出功,低压涡轮采用了大流道扩张角设计。应用数值方法对此设计涡轮进行了不同导向器开度以及有无导向器端壁径向间隙的涡轮气动性能与流场结构特性研究,并对大流道扩张角的导向器端壁径向间隙变化进行了理论分析。结果表明在设计点工况下,基本涡轮效率为0.903,相对折合流量为1.006,满足设计需求;大流道扩张角下,导向器端壁径向间隙对涡轮性能影响很大;在设计工况下,随着导向器开度的逐渐关小,涡轮主要气动参数反力度降低,通流流量下降,而效率变化相对较小,有利于调节发动机工作状态。在非设计工况下,涡轮效率随膨胀比变化亦相对较小。可见此设计变几何涡轮给发动机带来较大收益。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号