首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
航空   8篇
航天技术   2篇
航天   6篇
  2016年   1篇
  2012年   4篇
  2011年   2篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2004年   2篇
  2002年   1篇
  1999年   1篇
  1996年   1篇
  1995年   1篇
排序方式: 共有16条查询结果,搜索用时 191 毫秒
11.
NASA's EPOXI mission observed the disc-integrated Earth and Moon to test techniques for reconnoitering extrasolar terrestrial planets, using the Deep Impact flyby spacecraft to observe Earth at the beginning and end of Northern Hemisphere spring, 2008, from a range of ~1/6 to 1/3 AU. These observations furnish high-precision and high-cadence empirical photometry and spectroscopy of Earth, suitable as "ground truth" for numerically simulating realistic observational scenarios for an Earth-like exoplanet with finite signal-to-noise ratio. Earth was observed at near-equatorial sub-spacecraft latitude on 18-19 March, 28-29 May, and 4-5 June (UT), in the range of 372-4540?nm wavelength with low visible resolving power (λ/Δλ=5-13) and moderate IR resolving power (λ/Δλ=215-730). Spectrophotometry in seven filters yields light curves at ~372-948?nm filter-averaged wavelength, modulated by Earth's rotation with peak-to-peak amplitude of ≤20%. The spatially resolved Sun glint is a minor contributor to disc-integrated reflectance. Spectroscopy at 1100-4540?nm reveals gaseous water and carbon dioxide, with minor features of molecular oxygen, methane, and nitrous oxide. One-day changes in global cloud cover resulted in differences between the light curve beginning and end of ≤5%. The light curve of a lunar transit of Earth on 29 May is color-dependent due to the Moon's red spectrum partially occulting Earth's relatively blue spectrum. The "vegetation red edge" spectral contrast observed between two long-wavelength visible/near-IR bands is ambiguous, not clearly distinguishing between the verdant Earth diluted by cloud cover versus the desolate mineral regolith of the Moon. Spectrophotometry in at least one other comparison band at short wavelength is required to distinguish between Earth-like and Moon-like surfaces in reconnaissance observations. However, measurements at 850?nm alone, the high-reflectance side of the red edge, could be sufficient to establish periodicity in the light curve and deduce Earth's diurnal period and the existence of fixed surface units.  相似文献   
12.
Boynton  W.V.  Feldman  W.C.  Mitrofanov  I.G.  Evans  L.G.  Reedy  R.C.  Squyres  S.W.  Starr  R.  Trombka  J.I.  d'Uston  C.  Arnold  J.R.  Englert  P.A.J.  Metzger  A.E.  Wänke  H.  Brückner  J.  Drake  D.M.  Shinohara  C.  Fellows  C.  Hamara  D.K.  Harshman  K.  Kerry  K.  Turner  C.  Ward  M.  Barthe  H.  Fuller  K.R.  Storms  S.A.  Thornton  G.W.  Longmire  J.L.  Litvak  M.L.  Ton'chev  A.K. 《Space Science Reviews》2004,110(1-2):37-83
The Mars Odyssey Gamma-Ray Spectrometer is a suite of three different instruments, a gamma subsystem (GS), a neutron spectrometer, and a high-energy neutron detector, working together to collect data that will permit the mapping of elemental concentrations on the surface of Mars. The instruments are complimentary in that the neutron instruments have greater sensitivity to low amounts of hydrogen, but their signals saturate as the hydrogen content gets high. The hydrogen signal in the GS, on the other hand, does not saturate at high hydrogen contents and is sensitive to small differences in hydrogen content even when hydrogen is very abundant. The hydrogen signal in the neutron instruments and the GS have a different dependence on depth, and thus by combining both data sets we can infer not only the amount of hydrogen, but constrain its distribution with depth. In addition to hydrogen, the GS determines the abundances of several other elements. The instruments, the basis of the technique, and the data processing requirements are described as are some expected applications of the data to scientific problems.  相似文献   
13.
The Student Dust Counter (SDC) experiment of the New Horizons Mission is an impact dust detector to map the spatial and size distribution of dust along the trajectory of the spacecraft across the solar system. The sensors are thin, permanently polarized polyvinylidene fluoride (PVDF) plastic films that generate an electrical signal when dust particles penetrate their surface. SDC is capable of detecting particles with masses m>10?12 g, and it has a total sensitive surface area of about 0.1 m2, pointing most of the time close to the ram direction of the spacecraft. SDC is part of the Education and Public Outreach (EPO) effort of this mission. The instrument was designed, built, tested, integrated, and now is operated by students.  相似文献   
14.
Background: Both microgravity and simulated microgravity models, such as the 45HDT (45 degrees head-down tilt), cause a redistribution of body fluids indicating a possible adaptive process to the microgravity stressor. Understanding the physiological processes that occur in microgravity is a first step to developing countermeasures to stop its harmful effects, i.e., (edema, motion sickness) during long-term space flights. Hypothesis: Because of the kidneys' functional role in the regulation of fluid volume in the body, it plays a key role in the body's adaptation to microgravity. Methods: Rats were injected intramuscularly with a radioactive tracer and then lightly anesthetized in order to facilitate their placement in the 45HDT position. They were then placed in the 45HDT position using a specially designed ramp (45HDT group) or prone position (control group) for an experimental time period of 1 h. During this period, the 99mTc-DTPA (technetium-labeled diethylenepentaacetate, MW=492 amu, physical half-life of 6.02 h) radioactive tracer clearance rate was determined by measuring gamma counts per minute. The kidneys were then fixed and sectioned for electron microscopy. A point counting method was used to quantitate intracellular spaces of the kidney proximal tubules. Results: 45HDT animals show a significantly (p=0.0001) increased area in the interstitial space of the proximal tubules. Conclusions: There are significant changes in the kidneys during a 1 h exposure to a simulated microgravity environment that consist primarily of anatomical alterations in the kidney proximal tubules. The kidneys also appear to respond differently to the initial periods of head-down tilt.  相似文献   
15.
The heating and acceleration of ions during magnetic reconnection relevant to coronal heating and flares is explored via particle-in-cell (PIC) simulations and analytic modeling. We show that the dominant heating mechanism of sub-Alvénic ions during reconnection with a guide field, the case of greatest relevance to the corona, results from pickup behavior during the entry into reconnection exhausts, which produces effective thermal speeds of the order of the Alfvén velocity based on the reconnecting magnetic field. There is a mass-to-charge (M/Q) threshold for pickup behavior that favors the heating of high-M/Q ions. Ions below the threshold gain little energy beyond that associated with convective flow. PIC simulations with protons and alphas confirm the pickup threshold. The enhanced heating of high M/Q ions is consistent with observations of abundance enhancements of such ions in impulsive flares. In contrast to anti-parallel reconnection, the temperature increment during ion pickup is dominantly transverse, rather than parallel, to the local magnetic field. The simulations reveal the dominance of perpendicular heating, which is also consistent with observations. We suggest that the acceleration of ions to energies well above that associated with the Alfvén speed takes place during the interaction with many magnetic islands, which spontaneously develop during 3-D guide-field reconnection. The exploration of particle acceleration in a full 3-D multi-island system remains computationally intractable. Instead we explore ion acceleration in a multi-current layer system with low initial β. Ion energy gain takes place due to Fermi reflection in contracting and merging magnetic islands. Particle acceleration continues until the available magnetic free-energy is significantly depleted so that the pressure of energetic ions approaches that of the reconnecting field. Depending on the strength of the ambient guide field and in spite of the low initial plasma β, the dominance of parallel heating can cause significant regions of the plasma to exceed the marginal firehose condition.  相似文献   
16.
Stable, hydrogen-burning, M dwarf stars make up about 75% of all stars in the Galaxy. They are extremely long-lived, and because they are much smaller in mass than the Sun (between 0.5 and 0.08 M(Sun)), their temperature and stellar luminosity are low and peaked in the red. We have re-examined what is known at present about the potential for a terrestrial planet forming within, or migrating into, the classic liquid-surface-water habitable zone close to an M dwarf star. Observations of protoplanetary disks suggest that planet-building materials are common around M dwarfs, but N-body simulations differ in their estimations of the likelihood of potentially habitable, wet planets that reside within their habitable zones, which are only about one-fifth to 1/50th of the width of that for a G star. Particularly in light of the claimed detection of the planets with masses as small as 5.5 and 7.5 M(Earth) orbiting M stars, there seems no reason to exclude the possibility of terrestrial planets. Tidally locked synchronous rotation within the narrow habitable zone does not necessarily lead to atmospheric collapse, and active stellar flaring may not be as much of an evolutionarily disadvantageous factor as has previously been supposed. We conclude that M dwarf stars may indeed be viable hosts for planets on which the origin and evolution of life can occur. A number of planetary processes such as cessation of geothermal activity or thermal and nonthermal atmospheric loss processes may limit the duration of planetary habitability to periods far shorter than the extreme lifetime of the M dwarf star. Nevertheless, it makes sense to include M dwarf stars in programs that seek to find habitable worlds and evidence of life. This paper presents the summary conclusions of an interdisciplinary workshop (http://mstars.seti.org) sponsored by the NASA Astrobiology Institute and convened at the SETI Institute.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号