首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   48篇
  国内免费   14篇
航空   61篇
航天技术   4篇
综合类   5篇
航天   5篇
  2024年   1篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2018年   3篇
  2017年   5篇
  2016年   3篇
  2015年   11篇
  2014年   7篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2010年   10篇
  2009年   15篇
  2008年   1篇
  2007年   5篇
  2006年   1篇
  2002年   2篇
  2001年   1篇
排序方式: 共有75条查询结果,搜索用时 140 毫秒
41.
激光干涉法在扭摆法测量微冲量中的应用   总被引:3,自引:2,他引:1       下载免费PDF全文
介绍了激光干涉法测微小转角的原理及测量方法,提出了采用激光干涉测量微冲量的方法,将激光与靶作用产生的微冲量转化为扭摆的转动角度,通过激光干涉法测量此微小转角从而计算出冲量。相同单脉冲能量下,以PVC+2%C为工质,用扭摆法测量了激光与工质作用产生的微冲量,结果表明该测试系统分辨率为2×10-8N.s,量程为2×10-7~0.8×10-5N.s。  相似文献   
42.
异辛烷预混层流火焰传播特性的实验与数值研究   总被引:1,自引:1,他引:0       下载免费PDF全文
杨波  洪延姬  徐庆尧  刘毅  陈其盛  丁小雨 《推进技术》2015,36(11):1694-1698
利用定容弹和高速纹影摄像技术研究了初始压强50~101k Pa,当量比0.8~1.3的异辛烷预混层流火焰传播特性,分析了初始压强、当量比对层流燃烧速度和马克斯坦长度的影响。实验结果表明:异辛烷层流燃烧速度随初始压强的增加而减小;在不同初始压强条件下,最大层流燃烧速度都在当量比为1.1时获得;马克斯坦长度随当量比和初始压强的增加而减小;不同初始压强条件下,当量比为1.3时,马克斯坦长度接近于0,拉伸对火焰稳定性的影响最小;简化反应机理能很好地预测富燃条件下层流燃烧速度,贫燃时略大于实验结果。  相似文献   
43.
张鹏  洪延姬  丁小雨  沈双晏  杨波 《推进技术》2015,36(10):1582-1587
为研究温度和H2,CO,F等组分影响气相硼燃烧的化学反应动力学机制,利用基于CHEMKIN建立的B/C/H/O/N/F体系的反应动力学机理,模拟了温度和各自由基摩尔分数随时间的变化,并通过敏感性分析和化学反应速率分析研究了不同条件下影响气相硼燃烧的主要基元反应。结果表明,影响气相硼燃烧的主要反应式是R31 BO+O+M=BO2+M,BO的氧化速率决定了气相硼燃烧的快慢;提高初始温度,BO的氧化途径仍为R31;添加0.5%CO可以增加O自由基浓度,加快R31的反应速率;添加0.5%F后BO的氧化途径增加了反应式R183 BO+F+M=OBF+M,加快BO的氧化速率;添加0.5%H2后BO的氧化途径转变为R36 BO+H+M=HBO+M,R35 BO+OH+M=HBO2+M和R58 BO2+H+M=HBO2+M,加快BO的氧化速率从而缩短延迟时间;在含有H2的初始组分中,气相硼燃烧的主导反应过程:B2O2/HBO→BO→BO2→HBO2。  相似文献   
44.
辛明原  宋俊玲  饶伟  洪延姬  姜雅晶 《推进技术》2020,41(10):2332-2340
光谱组合对多光谱重建技术的重建结果有很大影响,不合理的光谱组合会降低光谱测量的有效性,加大重建误差。为了从海量的光谱数据库中选出适用于被测流场参数范围的最优光谱组合,提出了一种基于向量组线性相关性的光谱选择方法,采用数值仿真的方法开展研究,仿真结果验证了方法的可行性与可靠性。分析了测量信号无噪声和存在噪声时,光谱数量与重建结果的关系。研究发现最优光谱组合的线性相关指数小于0.01时,该组合存在光谱的冗余。保证测量有效性的同时光谱数量最少的光谱组合为线性相关指数不小于0.01的最优光谱组合。测量存在噪声时,光谱数量越多,噪声的抑制效果越好,重建结果精度更高。通过重复测量法可以有效降低噪声影响,用最少数量的光谱实现更多光谱的测量效果。  相似文献   
45.
激光推力器在高空环境下飞行不可避免地会受到来流的影响,而其入口状态直接影响激光聚焦点火之前的定常流场状态,从而影响推力器的推进性能。在来流马赫数为5的条件下,对某种吸气式推力器模型的入口在打开、关闭以及半开3种状态下的内外流场演化过程进行了数值模拟。结果表明:入口打开时,轴向阻力低于同工况下入口关闭和半开的情况;入口关闭时,聚焦区的激波传播速度明显增加,正推力峰值明显增大,抵消了入口关闭带来的额外负推力;入口半开时,正推力较入口关闭没有得到有效提高,轴向阻力较入口打开却大幅增加,导致其冲量耦合系数最低,推进性能最差。通过计算和分析预测,入口构形的改进设计可大幅度提高来流情况下推力器的推进性能,对入口构形优化还需进行大量工作。  相似文献   
46.
崔村燕  洪延姬  王广宇 《航空学报》2009,30(9):1566-1570
流场演化过程是揭示激光推进机理的重要研究内容之一。利用纹影系统和PCO-HSFC 高速相机,首次拍摄了自来水诱导CO2激光击穿空气产生的激波向空气和水中的演化过程。阐述了产生两次气蚀空穴的原因:初始时刻产生的空穴为激波作用于水面所致,第二次空穴出现在相机被触发后约8 μs 时,是激光烧蚀水蒸气作用于水面所形成的低压区。实验结果表明:击穿后流场向激光入射方向(空气中)演化较快,激波初速度较大,约为6 km/s;流场向水中演化相对较缓,激波初速度约为3.33 km/s。两者都服从指数衰减,分别在约73.368 μs 和41.649 μs 时衰减到声速。研究结果对于把水作为工质应用于激光推进有一定意义。  相似文献   
47.
空间碎片对人类航天活动的危害很大,用高能激光减缓其危害性已受到广泛关注.针对地基激光清除椭圆轨道空间碎片问题,提出了单脉冲变轨和多脉冲变轨两种计算分析方法.仿真计算结果表明,碎片初始真近角在100°~150°附近降轨效果最佳;从激光器在地球表面可供布站的区域讲,在碎片真近角180°附近,布站区域最大;当推进激光总作用时间较短或作用距离较小时,单脉冲变轨计算模型和多脉冲变轨计算模型计算结果接近,因此可采用单脉冲变轨计算模型计算结果近似表示多脉冲作用效果.  相似文献   
48.
卿泽旭  洪延姬  王殿恺  张斌 《推进技术》2017,38(7):1661-1668
为了研究纳秒脉冲激光能量沉积减小高超声速飞行器波阻的机理和规律,首先要研究纳秒脉冲激光能量在静止空气中的沉积现象。提出一种新方法测量了激光能量吸收率。并采用高分辨率纹影系统,对纳秒脉冲Nd:YAG固体激光器(波长532nm,最大激光能量368m J/pulse)击穿静止空气后所形成的等离子体热核进行观测。基于FLUENT软件并编写UDF,结合非对称能量沉积模型和空气等离子体参数,采用层流模型、Roe-FDS通量格式对激光能量沉积后的流动现象进行了数值模拟。结果表明,激光能量吸收率随着入射激光能量的增大而不断增大,并最终稳定在0.45左右。纳秒脉冲激光能量沉积后的流场纹影序列图像很好地呈现了爆炸波的传播、等离子体热核的演变和涡环的形成。激光能量沉积后60~120μs,涡环的涡核平均直径基本不变,且与入射激光能量大小呈二次函数关系。爆炸波约在t=60μs之后衰减至近似声波,此后其波速受入射激光能量大小的影响较小。数值模拟结果表明,Richtmyer-Meshkov不稳定性和激光能量的非对称沉积,是等离子体演化出尖刺的原因。  相似文献   
49.
服从任意分布的部件可用度快速计算方法   总被引:2,自引:0,他引:2  
工程中通常认为电子产品故障密度和修复服从指数分布,但是现代的航空和航天系统使用部件,并不总是指数分布,指数分布部件构成的系统也并不一定服从指数分布。文中提出了故障密度和修复密度任意分布的部件可用度快速计算方法,并且以故障密度和修复密度服从常用分布情形,即指数分布、正态分布、对数正态分布和威布尔分布情形,分析了任意分布部件可用度的变化规律,所提出的方法,便于工程实际应用。  相似文献   
50.
高重频激光控制IV型激波干扰方法研究   总被引:1,自引:1,他引:0       下载免费PDF全文
王殿恺  洪延姬  任玉新  李倩 《推进技术》2015,36(10):1459-1464
在实验和数值分析IV型激波干扰特性及其对飞行器表面压力和热流影响的基础上,提出采用脉冲激光能量控制IV型激波干扰的方法,以降低飞行器波阻、驻点压力和热流。采用实验和数值方法,研究了100m J单脉冲激光能量与马赫5.0条件下IV型激波干扰的相互作用过程,揭示了单脉冲激光能量控制IV型激波干扰的机理。数值研究了频率为150k Hz的激光能量注入后,激光空气锥的形成及其与IV型激波干扰的相互作用过程,得到了钝头体表面压力、热流和波阻的演化过程。结果表明,沉积高重频的激光沉积方式可以利用相对较少的激光能量形成比较稳定的准静态波结构,进而利用准静态波与IV型激波干扰的相互作用将高能区脱离钝头体表面。在马赫数为5.0的流场中沉积频率为150k Hz、单脉冲能量为5m J的激光能量可使峰值压力、热流和波阻分别降低40%,33%和23%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号