首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The study investigated the effects of intense geomagnetic storms of 2015 on the occurrences of large scale ionospheric irregularities over the African equatorial/low-latitude region. Four major/intense geomagnetic storms of 2015 were analyzed for this study. These storms occurred on 17th March 2015 (?229?nT), 22nd June 2015 (?204?nT), 7th October 2015 (?124?nT), and 20th December 2015 (?170?nT). Total Electron Content (TEC) data obtained from five African Global Navigation Satellite Systems (GNSS) stations, grouped into eastern and western sectors were used to derive the ionospheric irregularities proxy indices, e.g., rate of change of TEC (ROT), ROT index (ROTI) and ROTI daily average (ROTIAVE). These indices were characterized alongside with the disturbance storm time (Dst), the Y component of the Interplanetary Electric Field (IEFy), polar cap (PC) index and the H component of the Earth’s magnetic field from ground-based magnetometers. Irregularities manifested in the form of fluctuations in TEC. Prompt penetration of electric field (PPEF) and disturbance dynamo electric field (DDEF) modulated the behaviour of irregularities during the main and recovery phases of the geomagnetic storms. The effect of electric field over both sectors depends on the local time of southward turning of IMF Bz. Consequently, westward electric field inhibited irregularities during the main phase of March and October 2015 geomagnetic storms, while for the June 2015 storm, eastward electric field triggered weak irregularities over the eastern sector. The effect of electric field on irregularities during December 2015 storm was insignificant. During the recovery phase of the storms, westward DDEF suppressed irregularities.  相似文献   

2.
The bulk association between ionospheric storms and geomagnetic storms has been studied. Hemispheric features of seasonal variation of ionospheric storms in the mid-latitude were also investigated. 188 intense geomagnetic storms (Dst  100 nT) that occurred during solar cycles 22 and 23 were considered, of which 143 were observed to be identified with an ionospheric storm. Individual ionospheric storms were identified as maximum deviations of the F2 layer peak electron density from quiet time values. Only ionospheric storms that could clearly be associated with the peak of a geomagnetic storm were considered. Data from two mid-latitude ionosonde stations; one in the northern hemisphere (i.e. Moscow) and the other in the southern hemisphere (Grahamstown) were used to study ionospheric conditions at the time of the individual geomagnetic storms. Results show hemispheric and latitudinal differences in the intensity and nature of ionospheric storms association with different types of geomagnetic storms. These results are significant for our present understanding of the mechanisms which drive the changes in electron density during different types of ionospheric storms.  相似文献   

3.
The responses of the thermospheric density and ionospheric foF2 to the intense magnetic storms event on 17–20 April were analyzed by using data from CHAMP/STAR and ionosonde stations respectively, and NRLMSISE-00 and IRI-2007 models were used to simulate. The models can capture the tendency of changes, especially under quiet or moderate geomagnetic conditions, but are less accurate under geomagnetic storms. The thermospheric density is sensitive to the EUV emission and geomagnetic activity, and double-peak structure appeared in the dayside. On 19 April dayside, TADs traveled toward the equator with phase speeds of the order of 300–750 m/s, interfered near the equator to produce a total density perturbation of 25%, and then passed through each other and into the opposite hemisphere. For ionospheric foF2, there are non-symmetric hemispheres’ features during the intense geomagnetic activities. In details, middle latitudes in the north and high latitudes in both hemispheres are negative ionospheric storms, and the maximum amplitudes of δfoF2δfoF2 is about 60%, but the amplitudes decrease from the higher to lower latitudes in the Southern Hemisphere. Meanwhile, the equatorial station shows positive phase, and the maximum value is about 100%. Finally, the mechanisms for these features will be discussed in this study.  相似文献   

4.
对印度Trivandrum站第21太阳活动周内地磁H分量分析表明,不仅在磁扰日及其随后的静日内,强磁扰对赤道电集流有显着作用,即使在持续静日期间,较弱的磁扰仍然对赤道电离层有很大影响。磁静日昏侧出现反向(西向)电集流是正常现象,弱磁扰是使此反向电流消失的可能机制。   相似文献   

5.
Moderate geomagnetic storms occurred during January 22–25, 2012 period. The geomagnetic storms are characterized by different indices and parameters. The SYM-H value on January 22 increased abruptly to 67 nT at sudden storm commencement (SSC), followed by a sharp decrease to −87 nT. A second SSC on January 24 followed by a shock on January 25 was also observed. These SSCs before the main storms and the short recovery periods imply the geomagnetic storms are CME  -driven. The sudden jump of solar wind dynamic pressure and IMF BzBz are also consistent with occurrence of CMEs. This is also reflected in the change in total electron content (TEC) during the storm relative to quiet days globally. The response of the ionospheric to geomagnetic storms can also be detected from wave components that account for the majority of TEC variance during the period. The dominant coherent modes of TEC variability are diurnal and semidiurnal signals which account upto 83% and 30% of the total TEC variance over fairly exclusive ionospheric regions respectively. Comparison of TEC anomalies attributed to diurnal (DW1) and semidiurnal (SW2) tides, as well as stationary planetary waves (SPW1) at 12 UTC shows enhancement in the positive anomalies following the storm. Moreover, the impact of the geomagnetic storms are distinctly marked in the daily time series of amplitudes of DW1, SW2 and SPW1. The abrupt changes in amplitudes of DW1 (5 TECU) and SW2 (2 TECU) are observed within 20°S–20°N latitude band and along 20°N respectively while that of SPW1 is about 3 TECU. Coherent oscillation with a period of 2.4 days between interplanetary magnetic field and TEC was detected during the storm. This oscillation is also detected in the amplitudes of DW1 over EIA regions in both hemispheres. Eventhough upward coupling of quasi two day wave (QTDWs) of the same periodicity, known to have caused such oscillation, are detected in both ionosphere and upper stratosphere, this one can likely be attributed to the geomagnetic storm as it happens after the storm commencement. Moreover, further analysis has indicated that QTDWs in the ionosphere are strengthened as a result of coherent oscillation of interplanetary magnetic field with the same frequency as QTDWs. On the otherhand, occurrences of minor SSW and geomagnetic storms in quick succession complicated clear demarcation of attribution of the respective events to variability of QTDWs amplitudes over upper stratosphere.  相似文献   

6.
The effects of some geomagnetic storms on the F2 layer peak parameters over Ilorin, Nigeria (Lat. 8:53°N, Long. 4.5°E, dip angle, −2.96°) have been investigated. Our results showed that the highest intensity of the noon bite-out occurred during the March equinox and lowest during the June Solstice on quiet days. Quiet day NmF2 disturbances which appeared as a pre-storm enhancement, but not related to the magnetic storm event that followed were observed at this station. These enhancements were attributed to the modification of the equatorial electric field as a result of injection of the Auroral electric field to the low and equatorial ionosphere. For disturbed conditions, the morphology of the NmF2 on quiet days is altered. Daytime and nighttime NmF2 and hmF2 enhancements were recorded at this station. Decreases in NmF2 were also observed during the recovery periods, most of which appeared during the post-noon period, except the storm event of May 28–29. On the average, enhancements in NmF2 (i.e. Positive phases) are the prominent features of this station. Observations from this study also indicate that Dst, Ap and Kp which have been the most widely used indices in academic research in describing the behavior of geomagnetic storms, are not sufficient for storm time analysis in the equatorial and low latitude ionosphere.  相似文献   

7.
Coronal mass ejection (CME) occurs when there is an abrupt release of a large amount of solar plasma, and this cloud of plasma released by the Sun has an intrinsic magnetic field. In addition, CMEs often follow solar flares (SF). The CME cloud travels outward from the Sun to the interplanetary medium and eventually hits the Earth’s system. One of the most significant aspects of space weather is the ionospheric response due to SF or CME. The direction of the interplanetary magnetic field, solar wind speed, and the number of particles are relevant parameters of the CME when it hits the Earth’s system. A geomagnetic storm is most geo-efficient when the plasma cloud has an interplanetary magnetic field southward and it is accompanied by an increase in the solar wind speed and particle number density. We investigated the ionospheric response (F-region) in the Brazilian and African sectors during a geomagnetic storm event on September 07–10, 2017, using magnetometer and GPS-TEC networks data. Positive ionospheric disturbances are observed in the VTEC during the disturbed period (September 07–08, 2017) over the Brazilian and African sectors. Also, two latitudinal chains of GPS-TEC stations from the equatorial region to low latitudes in the East and West Brazilian sectors and another chain in the East African sector are used to investigate the storm time behavior of the equatorial ionization anomaly (EIA). We noted that the EIA was disturbed in the American and African sectors during the main phase of the geomagnetic storm. Also, the Brazilian sector was more disturbed than the African sector.  相似文献   

8.
The F2-region reaction to geomagnetic storms usually called as an ionospheric storm is a rather complicated event. It consists of so called positive and negative phases, which have very complicated spatial and temporal behavior. The main morphological features of ionospheric storms and the main processes governing their behavior were understood at the end of the 1900s and described in a series of review papers. During the recent decade there were many publications dedicated to the problem of ionospheric storms. In this paper a concept of ionospheric storm morphology and physics formulated at the end of the 1990s is briefly summarized and the most interesting results obtained in the 2000s are described. It is shown that the main features of the studies of the previous decade were: the use of GPS TEC data for analyzing the ionospheric storm morphology, attraction of sophisticated theoretical models for studying the processes governing ionospheric behavior in disturbed conditions, and accent to analysis of ionospheric behavior during prominent events (very strong and great geomagnetic storms). Also a special attention was paid to the pre-storm enhancements in foF2 and TEC.  相似文献   

9.
The results of modeling of ionospheric disturbances observed in the East Asian region during moderate storms are presented. The numerical model for ionosphere–plasmasphere coupling developed at the ISTP SB RAS is used to interpret the data of observations at ionospheric stations located in the longitudinal sector of 90–130°E at latitudes from auroral zone to equator. There is obtained a reasonable agreement between measurements and modeling results for winter and equinox. In the summer ionosphere, at the background of high ionization by the solar EUV radiation in the quiet geomagnetic period the meridional thermospheric wind strongly impacts the electron concentration in the middle and auroral ionosphere. The consistent calculations of the thermospheric wind permit to obtain the model results which are closer to summer observations. The actual information about the space-time variations of thermosphere and magnetosphere parameters should be taken into account during storms.  相似文献   

10.
利用宇宙线中子探测数据定性分析了地面宇宙线多台站之间的相互联系以及大磁暴与宇宙线之间的响应关系. 以Irkutsk和Oulu宇宙线台站为例, 运用小波去噪技术提高数据的稳定性. 结果表明, 相同世界时条件下, 两站宇宙线通量相关性在事件发生时较高; 而相同地方时条件下, 相关性则在平静期较高. 进一步采用相同地方时条件对不同宇宙线台站的通量在平静期和扰动期的相对变化进行分析, 选取2004年7月强地磁暴典型事例进行直观分析, 发现大地磁暴前Irkutsk和Oulu台站的宇宙线相对通量发生明显差异, 可以尝试作为强地磁暴宇宙线先兆特征. 通过对2001年3月至2005年5月的强磁暴和中强磁暴进行统计, 得到与强地磁暴相关的适当宇宙线相对差异阈值. 将得到的阈值对2005年9月至2011年12月所有强磁暴及中强磁暴进行验证, 总成功率达到87.5%, 误报率为35.7%, 结果较好.   相似文献   

11.
This paper presents traveling ionospheric disturbances (TIDs) observations from GPS measurements over the South African region during the geomagnetically disturbed period of 29–31 October 2003. Two receiver arrays, which were along two distinct longitudinal sectors of about 18°-20° and 27°-28° were used in order to investigate the amplitude, periods and virtual propagation characteristics of the storm induced ionospheric disturbances. The study revealed a large sudden TEC increase on 28 October 2003, the day before the first of the two major storms studied here, that was recorded simultaneously by all the receivers used. This pre-storm enhancement was linked to an X-class solar flare, auroral/magnetospheric activities and vertical plasma drift, based on the behaviour of the geomagnetic storm and auroral indices as well as strong equatorial electrojet. Diurnal trends of the TEC and foF2 measurements revealed that the geomagnetic storm caused a negative ionospheric storm; these parameters were depleted between 29 and 31 October 2003. Large scale traveling ionospheric disturbances were observed on the days of the geomagnetic storms (29 and 31 October 2003), using line-of-sight vertical TEC (vTEC) measurements from individual satellites. Amplitude and dominant periods of these structures varied between 0.08–2.16 TECU, and 1.07–2.13 h respectively. The wave structures were observed to propagate towards the equator with velocities between 587.04 and 1635.09 m/s.  相似文献   

12.
The magnetic field structure and the spatial characteristics of the large-scale currents in the magnetospheric tail were studied during quiet and moderately disturbed geomagnetic conditions in 2009. The magnetic field of the currents other than the tail current was calculated in terms of a paraboloid model of the Earth’s magnetosphere, A2000, and was subtracted from measurements. It was found on the base of obtained tail current magnetic field radial distribution that the inner edge of the tail current sheet is located in the night side magnetosphere, at distances of about 10 RE and of about 7 RE during quiet and disturbed periods respectively. During the disturbance of February 14, 2009 (Dstmin ∼ −35 nT), the Bx and the Bz component of the tail current magnetic field near its inner edge were about 60 nT, and −60 nT that means that strong cross-tail current have been developed. The tail current parameters at different time moments during February 14, 2009 have been estimated. Solar wind conditions during this event were consistent with those during moderate magnetic storms with minimum Dst of about −100 nT. However, the magnetospheric current systems (magnetopause and cross-tail currents) were located at larger geocentric distances than typical during the 2009 extremely quiet epoch and did not provide the expected Dst magnitude. Very small disturbance on the Earth’s surface was detected consistent with an “inflated” magnetosphere.  相似文献   

13.
Ionosphere response to severe geomagnetic storms that occurred in 2001–2003 was analyzed using data of global ionosphere maps (GIM), altimeter data from the Jason-1 and TOPEX satellites, and data of GPS receivers on-board CHAMP and SAC-C satellites. This allowed us to study in detail ionosphere redistribution due to geomagnetic storms, dayside ionospheric uplift and overall dayside TEC increase. It is shown that after the interplanetary magnetic field turns southward and intensifies, the crests of the equatorial ionization anomaly (EIA) travel poleward and the TEC value within the EIA area increases significantly (up to ∼50%). GPS data from the SAC-C satellite show that during the main phase of geomagnetic storms TEC values above the altitude of 715 km are 2–3 times higher than during undisturbed conditions. These effects of dayside ionospheric uplift occur owing to the “super-fountain effect” and last few hours while the enhanced interplanetary electric field impinged on the magnetopause.  相似文献   

14.
This work presents, for the first time, the analysis of the occurrence of ionospheric irregularities during geomagnetic storms at Tucumán, Argentina, a low latitude station in the Southern American longitudinal sector (26.9°S, 294.6°E; magnetic latitude 15.5°S) near the southern crest of the equatorial ionization anomaly (EIA). Three geomagnetic storms occurred on May 27, 2017 (a month of low occurrence rates of spread-F), October 12, 2016 (a month of transition from low to high occurrence rates of spread-F) and November 7, 2017 (a month of high occurrence rates of spread-F) are analyzed using Global Positioning System (GPS) receivers and ionosondes. The rate of change of total electron content (TEC) Index (ROTI), GPS Ionospheric L-band scintillation, the virtual height of the F-layer bottom side (h'F) and the critical frequency of the F2 layer (foF2) are considered. Furthermore, each ionogram is manually examined for the presence of spread-F signatures.The results show that, for the three events studied, geomagnetic activity creates favorable conditions for the initiation of ionospheric irregularities, manifested by ionogram spread-F and TEC fluctuation. Post-midnight irregularities may have occurred due to the presence of eastward disturbance dynamo electric fields (DDEF). For the May storm, an eastward over-shielding prompt penetration electric field, (PPEF) is also acting. A possibility is that the PPEF is added to the DDEF and produces the uplifting of the F region that helps trigger the irregularities. Finally, during October and November, strong GPS L band scintillation is observed associated with strong range spread-F (SSF), that is, irregularities extending from the bottom-side to the topside of the F region.  相似文献   

15.
本文利用100kHz的低频无线电波资料,计算分析了1986—1987年期间,几种不同磁扰情况下,低纬地区夜间电离层中100km以下区域积分电子浓度及其变化的起因.结果表明:该区域电子浓度的变化与地磁扰动关系密切.在磁静日期间,其值较小,且随磁扰而变化,但比磁扰滞后1到2天.在磁暴后,其值较大,会出现几次剧烈起伏.该区域积分电子浓度的起伏可大于一个量级.沉降电子产生的动致辐射可能是引起该区域电子浓度变化的主要原因之   相似文献   

16.
The equatorial ionosphere has been known to become highly disturbed and thus rendering space-based navigation unreliable during space weather events, such as geomagnetic storms. Modern navigation systems, such as the Global Positioning System (GPS) use radio-wave signals that reflect from or propagate through the ionosphere as a means of determining range or distance. Such systems are vulnerable to effects caused by geomagnetic storms, and their performance can be severely degraded. This paper analyses total electron content (TEC) and the corresponding GPS scintillations using two GPS SCINDA receivers located at Makerere University, Uganda (Lat: 0.3o N; Lon: 32.5o E) and at the University of Nairobi, Kenya (Lat: 1.3o S; Lon: 36.8o E), both in East Africa. The analysis shows that the scintillations actually correspond to plasma bubbles. The occurrence of plasma bubbles at one station was correlated with those at the other station by using observations from the same satellite. It was noted that some bubbles develop at one station and presumably “die off” before reaching the other station. The paper also discusses the effects of the geomagnetic storm of the 24–25 October 2011 on the ionospheric TEC at the two East African stations. Reductions in the diurnal TEC at the two stations during the period of the storm were observed and the TEC depletions observed during that period showed much deeper depletions than on the non-storm days. The effects during the storm have been attributed to the uplift of the ionospheric plasma, which was then transported away from this region by diffusion along magnetic field lines.  相似文献   

17.
In this study, different geomagnetic field models are compared in order to study the errors resulting from the representation of magnetic fields that affect the satellite attitude system. For this purpose, we used magnetometer data from two Low Earth Orbit (LEO) spacecraft and the geomagnetic models IGRF-12 (Thébault et al., 2015) and T89 (Tsyganenko, 1989) models to study the differences between the magnetic field components, strength and the angle between the predicted and observed vector magnetic fields. The comparisons were made during geomagnetically active and quiet days to see the effects of the geomagnetic storms and sub-storms on the predicted and observed magnetic fields and angles. The angles, in turn, are used to estimate the spacecraft attitude and hence, the differences between model and observations as well as between two models become important to determine and reduce the errors associated with the models under different space environment conditions. We show that the models differ from the observations even during the geomagnetically quiet times but the associated errors during the geomagnetically active times increase. We find that the T89 model gives closer predictions to the observations, especially during active times and the errors are smaller compared to the IGRF-12 model. The magnitude of the error in the angle under both environmental conditions was found to be less than 1°. For the first time, the geomagnetic models were used to address the effects of the near Earth space environment on the satellite attitude.  相似文献   

18.
This paper presents simulated results of the ionospheric behavior during few geomagnetic storms,which were occurred in the different seasons. The numerical model for ionosphere-plasmasphere coupling was used to interpret the observed variation of ionosphere structure. Reasons why the positive storms are dominant in the winter whereas the negative ones are dominant in the summer season present the special interest for the mid-latitude ionosphere. A theoretical analysis of the processes controlling the ionospheric response to the geomagnetic storms has showed a good agreement between the simulated results and measurements, as well as the crucial role of the neutral composition variations to fit the calculated and the observed ionospheric parameters.   相似文献   

19.
利用武汉电离层观象台研制的GPS TEC的现报方法及现报系统,对东亚地区GPS台网的观测数据进行处理分析,特别对2000年7月14-18日和2003年10月28日至11月1日两次特大磁暴期间的数据进行了对比考察,文中分析了两次磁暴间的电离层响应,得到对应不同磁暴时段电离层TEC的不同变化情况,着重揭示了TEC赤道异常峰的压缩和移动以及赤道异常随时间的压缩—反弹—恢复的过程,并结合高纬电离层的部分响应机制进行了说明,结果显示,两次磁暴期的电离层响应表现出了各自不同的特点,从而反映出因季节变化引起的高纬电离层暴时能量注入的不同而造成的全球性电离层扰动的不同形态,由此看出,磁暴期间电离层TEC的变化直接与太阳扰动发生的时间及其对高纬电离层的耦合有关,若短时期内连续发生多次磁暴,则电离层反应更加复杂,不能简单地当做单一磁暴叠加处理。  相似文献   

20.
地磁暴是空间天气预报的重要对象.在太阳活动周下降年和低年,冕洞发出的高速流经过三天左右行星际传输到达地球并引发的地磁暴占主导地位.目前地磁暴的预报通常依赖于1AU处卫星就位监测的太阳风参数,预报提前量只有1h左右.为了增加地磁暴预报提前量,需要从高速流和地磁暴的源头即太阳出发,建立冕洞特征参数与地磁暴的定量关系.分析了2010年5月到2016年12月的152个冕洞-地磁暴事件,利用SDO/AIA太阳极紫外图像提取了两类冕洞特征参数,分析了其与地磁暴期间ap,Dst和AE三种地磁指数的统计关系,给出冕洞特征参数与地磁暴强度以及发生时间的统计特征,为基于冕洞成像观测提前1~3天预报地磁暴提供了依据.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号