首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The need exists for compounds that will protect individuals from high-dose acute radiation exposure in space and the agents that might be less protective but less toxic and longer acting. Metals and metal derivatives provide a small degree of radioprotection (dose reduction factor < or = 1.2 for animal survival after whole-body irradiation). Emphasis is placed here on the radioprotective potential of selenium (Se). Both the inorganic salt, sodium selenite, and the organic Se compound, selenomethionine, enhance the survival of irradiated mice (60Co, 0.2 Gy/min) when injected IP either before (-24 hr and -1 hr) or shortly after (+15 min) radiation exposure. When administered at equitoxic doses (one-fourth LD10; selenomethionine = 4.0 mg/kg Se, sodium selenite = 0.8 mg/kg Se), both drugs enhanced the 30-day survival of mice irradiated at 9 Gy. Survival after 10-Gy exposure was significantly increased only after selenomethionine treatment. An advantage of selenomethionine is lower lethal and behavioral toxicity (locomotor activity depression) compared to sodium selenite, when they are administered at equivalent doses of Se. Sodium selenite administered in combination with WR-2721, S-2-(3-aminopropylamino)ethylphosphorothioic acid, enhances the radioprotective effect and reduces the lethal toxicity, but not the behavioral toxicity, of WR-2721. Other studies on radioprotection and protection against chemical carcinogens by different forms of Se are reviewed. As additional animal data and results from human chemoprevention trials become available, consideration also can be given to prolonged administration of Se compounds for protection against long-term radiation effects in space.  相似文献   

2.
We demonstrated that glucan, a beta-1,3 polysaccharide immunomodulator, enhances survival of mice when administered before radiation exposure. Glucan's prophylactic survival-enhancing effects are mediated by several mechanisms including (1) increasing macrophage-mediated resistance to potentially lethal postirradiation opportunistic infections, (2) increasing the D(o) of hematopoietic progenitor cells, and (3) accelerating hematopoietic reconstitution. In addition, even when administered shortly after some otherwise lethal doses of radiation, glucan increases survival. Glucan's therapeutic survival-enhancing effects are also mediated through its ability to enhance macrophage function and to accelerate hematopoietic reconstitution; glucan's therapeutic potential, however, is ultimately dependent on the survival of a critical number of hematopoietic stem cells capable of responding to glucan's stimulatory effects. Preirradiation administration of the traditional aminothiol radioprotectants WR-2721 and WR-3689 has been previously demonstrated to be an extremely effective means to increase hematopoietic stem cell survival. Therapeutic glucan treatment administered in combination with preirradiation WR-2721 or WR-3689 treatment synergistically increases both hematopoietic reconstitution and survival. Such combined modality treatments offer new promise in treating acute radiation injury.  相似文献   

3.
Two thiophosphoroate compounds WR-2721 and WR-151327 were assessed for their ability to modify the deleterious effects (life shortening and carcinogenesis) of fission-spectrum neutrons (kerma-weighted mean energy of 0.85 MeV) or gamma rays on B6CF1 hybrid mice. Male and female mice, 200 of each sex per experimental group, were irradiated individually at 110 days of age. Radioprotectors (400 mg/kg of WR-2721 or 580 mg/kg of WR-151327) were administered intraperitoneally 30 min prior to irradiation. Neutron doses were 10 cGy or 40 cGy and gamma ray doses were 206 cGy or 417 cGy. Animals were housed five to a cage; cage locations in the holding rooms were randomized by computer. Animals were checked daily and all deceased animals were necropsied. WR-2721 afforded protection against both neutron- and gamma-ray-induced carcinogenesis and subsequent life shortening. Cumulative survival curves for unirradiated mice of either sex were unaffectecd by protectors. WR-2721 protected irradiated groups against life shortening by approximately 10 cGy of neutrons or 100 cGy of gamma rays. WR-151327 was as effective as WR-2721 against neutron irradiation.  相似文献   

4.
Protective effects of indomethacin, a prototype prostaglandin-inhibiting agent, against early and late sequelae of radiation injury (after X-rays or gamma rays) in mice were investigated. The following tissues or organs were examined: hematopoietic tissue, esophagus, jejunum, colon, lung, hair follicles, and tissues involved in the development of radiation-induced leg contractures. In addition, the effect of indomethacin was tested against radiation-induced carcinogenesis. In all experiments, the radiation was delivered as a single dose. Indomethacin led to significant protection of hematopoietic tissue, by a factor of 1.3. There was also some protection against radiation-induced pneumonitis and against radiation-induced carcinogenesis (protection factor of 1.2). The other tissues tested showed no change in their radioresponse after being treated with indomethacin. Thus, indomethacin can act as a radioprotective agent against both early and late sequelae of radiation, but its effect is dependent on the tissue tested. This protection is smaller than that observed with WR-2721. However, indomethacin combined with WR-2721 produced a radioprotective effect greater than the radioprotection achieved by individual treatments.  相似文献   

5.
The aminothiols exemplified by WR-2721 are effective radioprotectors; however, their toxicity associated with hypotension, nausea, and emesis has limited their development for applications to medicine or in harzardous radiation environments. There is a need for new radioprotectors that have fewer toxic side effects when given alone or combined with reduced amounts of thiols. A variety of prostaglandins (PGs) have been shown to be radioprotective agents and some appear to have fewer toxic side effects than the aminothiols. Iloprost, a stable PGI, analog protects the clonogenic epithelial cells of intestinal crypts but does not protect epithelial cells of the villi. In contrast, an E-series omega chain diene analog designated SC-44932 protects epithelial cells of both crypts and villi. When the two are combined, protection of the crypts is additive and the villi are protected to the same degree as when SC-44932 is given alone. Since radioprotection for some PGs has been shown to be dependent upon receptors, we suggest that the pattern of radioprotection seen with these two analogs depend on the location of the respective receptors or on the ability of differentiated villus cells to respond to PGs. By studying different analogs, we hope to identify mechanisms associated with PG-induced radioprotection and to identify the most protective PG analogs for applications of radioprotection.  相似文献   

6.
Once introduced in the organism, the radioprotectors are fastly degraded and that increases their toxicity, shortens their duration of action and renders them inactive after oral delivery. So, it was tried to protect them by their incorporation in vectors. When a cysteamine-liposomal suspension was orally delivered, it showed a radioprotective activity for about 4 hours. By using 35S cysteamine, it was noted that its plasmatic concentration was increased. Freeze-drying of these preparations was a good mean of conservation if the samples were stored at 4 degrees C. A good and sustained activity was also obtained after oral delivery of WR-2721 entrapped in microspheres. Otherwise, it was shown that after interacting with the polar heads of phospholipids, under determined conditions of pH and in fluid phase, aminothiols can penetrate inside the membrane and be entrapped in the internal medium of liposomes and as they penetrate, they can lessen the diffusion of oxygen in the lipidic bilayers.  相似文献   

7.
Spaceflight personnel need treatment options that would enhance survival from radiation and would not disrupt task performance. Doses of prophylactic or therapeutic agents known to induce significant short-term (30-day) survival with minimal behavioral (locomotor) changes were used for 180-day survival studies. In protection studies, groups of mice were treated with the phosphorothioate WR-151327 (200 mg/kg, 25% of the LD(10)) or the immunomodulator, synthetic trehalose dicorynomycolate (S-TDCM; 8 mg/kg), before lethal irradiation with reactor-generated fission neutrons and gamma-rays (n/gamma=1) or 60Co gamma-rays. In therapy studies, groups of mice received either S-TDCM, the antimicrobial ofloxacin, or S-TDCM plus ofloxacin after irradiation. For WR-151327 treated-mice, survival at 180 days for n/gamma=1 and gamma-irradiated mice was 90% and 92%, respectively; for S-TDCM (protection), 57% and 78%, respectively; for S-TDCM (therapy), 20% and 25%, respectively; for ofloxacin, 38% and 5%, respectively; for S-TDCM combined with ofloxacin, 30% and 30%, respectively; and for saline, 8% and 5%, respectively. Ofloxacin or combined ofloxacin and S-TDCM increased survival from the gram-negative bacterial sepsis that predominated in n/gamma=1 irradiated mice. The efficacies of the treatments depended on radiation quality, treatment agent and its mode of use, and microflora of the host.  相似文献   

8.
Chemical repair may be provided by radioprotective compounds present during exposure to ionizing radiation. Considering DNA as the most sensitive target it is feasible to biochemically improve protection by enhancing DNA repair mechanisms. Protection of DNA by reducing the amount of damage (by radical scavenging and chemical repair) followed by enhanced repair of DNA will provide much improved protection and recovery. Furthermore, in cases of prolonged exposure, such as is possible in prolonged space missions, or of unexpected variations in the intensity of radiation, as is possible when encountering solar flares, it is important to provide long-acting protection, and this may be provided by antioxidants and well functioning DNA repair systems. It has also become important to provide protection from the potentially damaging action of long-lived clastogenic factors which have been found in plasma of exposed persons from Hiroshima & Nagasaki, radiation accidents, radiotherapy patients and recently in "liquidators"--persons involved in salvage operations at the Chernobyl reactor. The clastogenic factor, which causes chromatid breaks in non-exposed plasma, might account for late effects and is posing a potential carcinogenic hazard. The enzyme superoxide dismutase (SOD) has been shown to eliminate the breakage factor from cultured plasma of exposed persons. Several compounds have been shown to enhance DNA repair: WR-2721, nicotinamide, glutathione monoester (Riklis et al., unpublished) and others. The right combination of such compounds may prove effective in providing protection from a wide range of radiation exposures over a long period of time.  相似文献   

9.
Exposure of rats to high-energy iron particles (600 MeV/amu) has been found to alter behavior after doses as low as 10 rads. The performance of a task that measures upper body strength was significantly degraded after irradiation. In addition, an impairment in the regulation of dopamine release in the caudate nucleus (a motor center in the brain), lasting at least 6 months, was also found and correlated with the performance deficits. A general indication of behavioral toxicity and an index of nausea and emesis, the conditioned taste aversion, was also evident. The sensitivity to iron particles was 10-600 times greater than to gamma photons. These results suggest that behavioral and neurobiological damage may be a consequence of exposure to low doses of heavy particles and that this possibility should be extensively studied.  相似文献   

10.
Carcinogenesis is postulated to be a progressive multistage process characterized by an increase in genomic instability and clonal selection with each mutational event endowing a selective growth advantage. Genomic instability as manifested by the amplification of specific gene fragments is common among tumor and transformed cells. In the present study, immortalized human bronchial (BEP2D) cells were irradiated with graded doses of either 1GeV/nucleon 56Fe ions or 150 keV/μm alpha particles. Transformed cells developed through a series of successive steps before becoming tumorigenic in nude mice. Tumorigenic cells showed neither ras mutations nor deletion in the p16 tumor suppressor gene. In contrast, they harbored mutations in the p53 gene and over-expressed cyclin D1. Genomic instability among transformed cells at various stage of the carcinogenic process was examined based on frequencies of PALA resistance. Incidence of genomic instability was highest among established tumor cell lines relative to transformed, non-tumorigenic and control cell lines. Treatment of BEP2D cells with a 4 mM dose of the aminothiol WR-1065 significantly reduced their neoplastic transforming response to 56Fe particles. This model provides an opportunity to study the cellular and molecular mechanisms involved in malignant transformation of human epithelial cells by heavy ions.  相似文献   

11.
The relative behavioral effectiveness of heavy particles was evaluated. Using the taste aversion paradigm in rats, the behavioral toxicity of most types of radiation (including 20Ne and 40Ar) was similar to that of 60Co photons. Only 56Fe and 93Nb particles and fission neutrons were significantly more effective. Using emesis in ferrets as the behavioral endpoint, 56Fe particles and neutrons were again the most effective; however, 60Co photons were significantly more effective than 18 MeV electrons. These results suggest that LET does not completely predict behavioral effectiveness. Additionally, exposing rats to 10 cGy of 56Fe particles attenuated amphetamine-induced taste aversion learning. This behavior is one of a broad class of behaviors which depends on the integrity of the dopaminergic system and suggests the possibility of alterations in these behaviors following exposure to heavy particles in a space radiation environment.  相似文献   

12.
All radiations originate in space, and the spectrum of radiations reaching the troposphere is limited only because of their range and absorption by the ozone layer above the atmosphere. Ultraviolet-C and the very heavy ions are therefore produced on earth only artificially, by special lamps and in accelerators. The range of biological effects of the different UV radiations and low and high LET radiations have been studied extensively, yet only recently new facts such as the production of DNA strand breaks by long wave UV light were established, adding to the various points of encounter existing between ionizing and nonionizing radiations. There are some similarities in radiation products, and the resulting effects of insult by radiation on biological systems very often are similar, if not the same. A common phenomenon that exists in all healthy biological cells is the ability to repair damage to DNA and thus either survive or mutate, and although the specific mechanisms of repair are somewhat different, the end result is the same. Recently a mechanism of improved radioprotection was found to involve an effect of certain radioprotective compounds on DNA repair. It is suggested that improved, and nontoxic, modes of protection may be offered by employing such compounds as biological response modifiers and natural substances. Further research is needed and is under way.  相似文献   

13.
Exposure to heavy particles can affect the functioning of the central nervous system (CNS), particularly the dopaminergic system. In turn, the radiation-induced disruption of dopaminergic function affects a variety of behaviors that are dependent upon the integrity of this system, including motor behavior (upper body strength), amphetamine (dopamine)-mediated taste aversion learning, and operant conditioning (fixed-ratio bar pressing). Although the relationships between heavy particle irradiation and the effects of exposure depend, to some extent, upon the specific behavioral or neurochemical endpoint under consideration, a review of the available research leads to the hypothesis that the endpoints mediated by the CNS have certain characteristics in common. These include: (1) a threshold, below which there is no apparent effect; (2) the lack of a dose-response relationship, or an extremely steep dose-response curve, depending on the particular endpoint; and (3) the absence of recovery of function, such that the heavy particle-induced behavioral and neural changes are present when tested up to one year following exposure. The current report reviews the data relevant to the degree to which these characteristics are common to neurochemical and behavioral endpoints that are mediated by the effects of exposure to heavy particles on CNS activity.  相似文献   

14.
采用电化学沉积法于室温、碱性条件下在氧化铟锡(ITO,Indium Tin Oxide)表面制备了硼酸钴(CoBi)、硼酸镍(NiBi)、硼酸锰(MnBi)、硼酸铑(RhBi)、硼酸钯(PdBi)几种无定形的硼酸金属化合物薄膜,并对其形貌和结构进行表征,结果表明几种薄膜均为无定形结构.将这几种硼酸金属化合物应用于电化学催化水氧化制氧,对比其催化活性,发现CoBi,NiBi,RhBi具有较高的催化性能,而MnBi和PdBi催化活性较低.进一步研究硼酸pH值对CoBi电催化水分解的影响.发现硼酸有利于金属化合物的制备,pH7~11范围内,HBO32-作为质子受体含量逐渐增大,能接受放氧过程产生的质子,促进催化水分解过程的进行.所得催化剂可自我修复,实现循环利用.  相似文献   

15.
Application of the degeneration sensitive, cupric-silver staining method to brain sections of male Sprague-Dawley rats irradiated 4 days before sacrifice with 155 Mev protons, 2-8 Gy at 1 Gy/min (N=6) or 22-l0lGy at 20 Gy/min (N=16) or with 18.6 Mev electrons, 32-67 Gy at 20 Gy/min (N=20), doses which elicit behavioral changes (accelerod or conditioned taste aversion), resulted in a display of degeneration of astrocyte-like cell profiles which were not uniformly distributed. Plots of 'degeneration scores' (counts of profiles in 29 areas) vs. dose for the proton and electron irradiations displayed a linear dose response for protons in the range of 2-8 Gy. In the 20-100 Gy range, for both electrons and protons the points were distributed in a broad band suggesting a saturation curve. The dose range in which these astrocyte-like profiles becomes maximal corresponds well with the dose range for the X-ray eradication of a subtype of astrocytes, 'beta astrocytes'.  相似文献   

16.
Free radicals produced by exposure to heavy particles have been found to produce motor and cognitive behavioral toxicity effects in rats similar to those found during aging. The present research was designed to investigate the effects of exposure to 56Fe particles on the ability of male Sprague-Dawley rats to detect novel arrangements in a given environment. Using a test of spatial memory previously demonstrated to be sensitive to aging, open field activity and reaction to spatial and non-spatial changes were measured in a group that received a dose of 1.5 Gy (n=10) of 56Fe heavy particle radiation or in non-radiated controls (n=10). Animals irradiated with 1.5 Gy of 56Fe particles exhibited some age-like effects in rats tested, even though they were, for the most part, subtle. Animals took longer to enter, visited less and spent significantly less time in the middle and the center portions of the open field, independently of total frequency and duration of activity of both groups. Likewise, irradiated subjects spend significantly more time exploring novel objects placed in the open field than did controls. However, irradiated subjects did not vary from controls in their exploration patterns when objects in the open field were spatially rearranged. Thus, irradiation with a dose of 1.5 Gy of 56Fe high-energy particle radiation elicited age-like effects in general open field exploratory behavior, but did not elicit age-like effects during the spatial and non-spatial rearrangement tasks.  相似文献   

17.
Geologic and climatologic studies suggest that conditions on early Mars were similar to early Earth. Because life on Earth is believed to have originated during this early period (3.5 billion years ago), the Martian environment could have also been conducive to the origin of life. To investigate this possibility we must first define the attributes of an early Martian biota. Then, specific geographic locations on Mars must be chosen where life may have occurred (i.e. areas which had long standing water), and within these distinct locations search for key signatures or bio-markers of a possible extinct Martian biota. Some of the key signatures or bio-markers indicative of past biological activity on Earth may be applicable to Mars including: reduced carbon and nitrogen compounds, CO3(2-), SO4(2-), NO3-, NO2- [correction of NO2(2)], Mg, Mn, Fe, and certain other metals, and the isotopic ratios of C, N and S. However, we must also be able to distinguish abiotic from biologic origins for these bio-markers. For example, abiotically fixed N2 would form deposits of NO3- and NO2-, whereas biological processes would have reduced these to ammonium containing compounds, N2O, or N2, which would then be released to the atmosphere. A fully equipped Mars Rover might be able to perform analyses to measure most of these biomarkers while on the Martian surface.  相似文献   

18.
We observed daily sporadic-E activity in Japan using a series of ionosondes and discovered that the activity occurred in recurrent cycles, lasting approximately 2 to 16 days. We describe the cycles by referring to scaled data recorded in 15-minute segments during 1996. Planetary-wave activity in the lower thermosphere was observed during the same period with an MF radar located at Yamagawa (31.2° N, 130.6° E) in western Japan. We discuss the recurrent phenomenon in spring and summer 1996, sporadic-E exceeds 5 MHz in critical frequency, in relation to the periods of wind oscillations derived from MF-radar wind observations. From April to May 1996, there was a period of increased sporadic-E activity. The periods in which the occurrence rate of foEs exceeded 5 MHz in critical frequency decreased gradually from 7.4 to 5 days and correspond to long-period oscillations of meridional winds tracked by the MF radar at Yamagawa. In August 1996, we found the spectra of foEs observed at Yamagawa occurred in periods of 1.6, 2, 8, and 16 days. Our results strongly support the possibility that planetary waves play a significant role in generating long periods of oscillations in foEs.  相似文献   

19.
The effects of exposure to ionizing radiation on behavior may result from effects on peripheral or on central systems. For behavioral endpoints that are mediated by peripheral systems (e.g., radiation-induced conditioned taste aversion or vomiting), the behavioral effects of exposure to heavy particles (56Fe, 600 MeV/n) are qualitatively similar to the effects of exposure to gamma radiation (60Co) and to fission spectrum neutrons. For these endpoints, the only differences between the different types of radiation are in terms of relative behavioral effectiveness. For behavioral endpoints that are mediated by central systems (e.g., amphetamine-induced taste aversion learning), the effects of exposure to 56Fe particles are not seen following exposure to lower LET gamma rays or fission spectrum neutrons. These results indicate that the effects of exposure to heavy particles on behavioral endpoints cannot necessarily be extrapolated from studies using gamma rays, but require the use of heavy particles.  相似文献   

20.
To evaluate the effects of ionizing radiation (IR) on murine preosteoblastic cell differentiation, we directed OCT-1 cells to the osteoblastic lineage by treatment with a combination of β-glycerophosphate (β-GP), ascorbic acid (AA), and dexamethasone (Dex). In vitro mineralization was evaluated based on histochemical staining and quantification of the hydroxyapatite content of the extracellular bone matrix. Expression of mRNA encoding Runx2, transforming growth factor β1 (TGF-β1), osteocalcin (OCN), and p21CDKN1A was analyzed. Exposure to IR reduced the growth rate and diminished cell survival of OCT-1 cells under standard conditions. Notably, calcium content analysis revealed that deposition of mineralized matrix increased significantly under osteogenic conditions after X-ray exposure in a time-dependent manner. In this study, higher radiation doses exert significant overall effects on TGF-β1, OCN, and p21CDKN1A gene expression, suggesting that gene expression following X-ray treatment is affected in a dose-dependent manner. Additionally, we verified that Runx2 was suppressed within 24 h after irradiation at 2 and 4 Gy. Although further studies are required to verify the molecular mechanism, our observations strongly suggest that treatment with IR markedly alters the differentiation and mineralization process of preosteoblastic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号