首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We show that the higher range of the heliolongitudinal asymmetry of the solar wind speed in the positive polarity period (A > 0) than in the negative polarity period (A < 0) is one of the important reasons of the larger amplitudes of the 27-day variation of the galactic cosmic ray (GCR) intensity in the period of 1995–1997 (A > 0) than in 1985–1987 (A < 0). Subsequently, different ranges of the heliolongitudinal asymmetry of the solar wind speed jointly with equally important corresponding drift effect are general causes of the polarity dependence of the amplitudes of the 27-day variation of the GCR intensity. At the same time, we show that the polarity dependence is feeble for the last unusual minimum epoch of solar activity 2007–2009 (A < 0); the amplitude of the 27-day variation of the GCR intensity shows only a tendency of the polarity dependence. We present a three dimensional (3-D) model of the 27-day variation of GCR based on the Parker’s transport equation. In the 3-D model is implemented a longitudinal variation of the solar wind speed reproducing in situ measurements and corresponding divergence-free interplanetary magnetic field (IMF) derived from the Maxwell’s equations. We show that results of the proposed 3-D modeling of the 27-day variation of GCR intensity for different polarities of the solar magnetic cycle are in good agreement with the neutron monitors experimental data. To reach a compatibility of the theoretical modeling with observations for the last minimum epoch of solar activity 2007–2009 (A < 0) a parallel diffusion coefficient was increased by ∼40%.  相似文献   

2.
Since 1958, daily temperature-height profiles have been measured up to 35–40 km at Berlin by means of radiosondes. An attempt is made here to describe these profiles as a function of the noon solar zenith angle, χ. It is shown that the basic annual variation of the measured profiles, T(h), can be presented as T(h) = To(h) cosn(h)χ. The subsolar temperature, To(h), and exponent, n(h), have been determined empirically from the summer and autumn data when the radiative balance is obviously dominant. Neither term depends on the solar cycle. Warmings in winter and coolings in spring are treated as disturbances in the annual variation, due to dynamics, and are described separately as ± ΔT(h).  相似文献   

3.
The general features of occurrence of an additional layer on the bottom side of F region, referred to as F0.5 layer in the pre noon period, over the magnetic equatorial location of Trivandrum (8.5° N; 77° E; dip lat of 0.5° N) in India during the period from 2004 to 2007 are presented using ionosonde observations. The F0.5 layer has a June (northern summer) solsticial maximum probability of occurrence with secondary maxima during December (northern winter) solstice. The seasonal as well as the day-to-day variability in the occurrence of F0.5 layer as mentioned in this paper seems to be a result of the variations in the amplitude and phases of the tides and gravity waves, and inventory of the metallic ions of meteoric origin. This study brings out an important manifestation of morning time F layer base region dynamics.  相似文献   

4.
An interface between the fully ionized hydrogen plasma of the solar wind (SW) and the partially ionized hydrogen gas flow of the local interstellar medium (LISM) is formed as a region where there is a strong interaction between these two flows. The interface is bounded by the solar wind termination shock (TS) and the LISM bow shock (BS) and is separated on two regions by the heliopause (HP) separating the solar wind and charged component of the LISM (plasma component below). The BS is formed due to the deceleration of the supersonic LISM flow relative to the solar system. Regions of the interface between the TS and HP and between the HP and BS were in literature named as the inner and outer heliosheaths, respectively. An investigation of the structure and physical properties of the heliosheath is at present especially interested due to the fact that Voyager-1 and Voyager-2 have crossed the TS in December 2004 (Burlaga, L.F., Ness, N.F., Acuna, M.Y., et al. Crossing the termination shock into the the heliosheath. Magnetic fields. Science 309, 2027–2029, 2005; Fisk, L.A. Journey into the unknown beyond. Science 309, 2016–2017, 2005; Decker, R.B., Krimigis, S.M., Roelof, E.C., et al. Voyager 1 in the foreshock, termination shock and heliosheath. Science 309, 2020–2024, 2005; Stone, E.C., Cummings, A.C., McDonald, F.B., et al. Voyager 1 explores the termination shock region and the heliosheath beyond. Science 309, 2017–2020, 2005) and in September 2007 (Jokipii, J.R. A shock for Voyager 2. Nature 454, 38–39, 2008; Gurnett, D.A., Kurth, W.S. Intense plasma waves at and near the solar wind termination shock. Nature 454, 78–80, 2008. doi: 10.1038/nature07023; Wang, L., Lin, R.P., Larson, D.E., Luhmann, J.G. Domination of heliosheath pressure by shock-accelerated pickup ions from observations of neutral atoms. Nature 454, 81–83, 2008. doi: 10.1038/nature07068.14; Burlaga, L.F., Ness, N.F., Acuna, M.H., et al. Magnetic fields at the solar wind termination shock. Nature 454, 75–77, 2008. doi: 10.1038/nature07029; Richardson, J.D., Kasper, J.C., Wang, C., et al. Cool heliosheath plasma and deceleration of the upstream solar wind at the termination shock. Nature 454, 63–66, 2008. doi: 10.1038/nature07024; Stone, E.C., Cummings, A.C., McDonald, F.B., et al. An asymmetric solar wind termination shock. Nature 454, 71–74, 2008. doi: 10.1038/nature07022; Decker, R.B., Krimigis, S.M., Roelof, E.C., et al. Mediation of the solar wind termination shock by non-thermal ions. Nature 454, 67–70, 2008. doi: 10.1038/nature 07030), respectively, and entered to the inner heliosheath.  相似文献   

5.
In this paper we explore the possibilities of applying satellite ocean colour (OC) observations and SST to study the changes in the conditions of hypoxia in the near-bottom water in the western part of Peter the Great Bay. Near-bottom water hypoxia occurs in water bodies with increased organic matter influx when the dissolved oxygen (DO) consumed at its oxidation is not restored. Consumption of most DO is usually attributed to the oxidation of organic matter formed as a result of increased algae growth during water eutrophication. Satellite data on indicators of phytoplankton (chlorophyll-a concentration (Chl) and fluorescence (FLH)) allow to analyze the spatial-temporal changes of this substation. Coloured dissolved organic matter (CDOM), non-algal particles (NAP) influence on satellite Chl estimates and also on near-bottom water hypoxia formation. This study analyzes daily, seasonal, and inter-annual changes in the distributions of indicators (Chl, FLH, the coefficients of light absorption by coloured detrital matter (aCDM) and light backscattering by suspended particles (bbp)), based on the instant satellite OC data from MODIS-Aqua. Data on the Chl, the sea surface temperature (SST) from the MODIS-Aqua, the precipitation from the TRMM satellite and the hydrometeorological stations (HMSs), the wind speed and direction from HMS “Vladivostok” are used to study the influence of hydrometeorological conditions on the Chl values. These distributions were compared with the literary information based on field observations of the hypoxia cases in the same area and with the changes in the vertical DO, Chl, temperature, salinity distribution obtained by coastal expeditions in October-November 2010 and February-March 2011. Significant interrelations within 95% confidence level between the satellite Chl, FLH values calculated at the MUMM atmospheric correction and in situ Chl values obtained in the autumn of 2010 were reached separately for the cases with winds of northern and southern directions with the correlation coefficients of 0.71, 0.48 and 0.49, 0.71, respectively. Significant dependences of Chl on SST and Chl on wind speed explained by the influence of continental runoff and water ventilation were obtained. Therefore, the changes of Chl reflect the changes of hypoxic conditions in the near-bottom water. In Amursky Bay the onset of hypoxia was at the Chl and SST values equal to 4 mg m?3 and 13 °C (↑ – at increasing SST); near Furugelm Island it was at 1.6 mg m?3 and 25 °C (↑), 1 mg m?3 and 21 °C (↓). The difference in the Chl values was reflected in the hypoxia onset timings that were the beginning of June (2011), August (2013), and September (2014), respectively. The water flow from the eastern coast of Amursky Bay in early August of 2013 recorded from the OC and SST satellite imagers appeared in an additional hypoxic zone. Decreased OC characteristics in the runoff of the Razdolnaya River in August-September of 2014 were a sign of hypoxia at its mouth. Near Furugelm Island the hypoxia destruction (increase in the DO level from 1 to 4.5 ml L?1) was observed at the Chl of 0.9 mg m?3 and SST = 18 °C (↓). At the autumn maximum of Chl equal to 1.7 mg m?3 and SST = 4 °C (↓) in mid-November the DO level here increased to 8 ml L?1. In Amursky Bay, short-term destructions/weakening of hypoxia manifested themselves in sharp increases of Chl. At that, the ratio between the Chl value and the approximation level was equal to 2 and higher for SST equal to 22–25 °C (↑), to 0.9 and higher for SST equal to 5–13 °C (↓). With the water stratification destruction in temperature and the noticeable weakening of the stratification in salinity (mid-November), the hypoxia destructed (the DO level increased from 2 to 6 ml L?1). In this case, Chl and SST were about 3 mg m?3 and 5 °C (↓).  相似文献   

6.
This paper discusses the monthly and seasonal variation of the total electron content (TEC) and the improvement of performance of the IRI model in estimating TEC over Ethiopia during the solar maximum (2013–2016) phase employing as reference the GPS derived TEC data inferred from four GPS receivers installed in different regions of Ethiopia; Assosa (geog 10.05°N, 34.55°E, Geom. 7.01°N), Ambo (8.97°N, 37.86°E, Geom. 5.42°N), Nazret (8.57°N, 39.29°E, Geom. 4.81°N) and Arba Minch (6.06°N, 37.56°E, Geom. 2.62°N). The results reveal that, in the years 2013–2016, the highest peak GPS-derived diurnal VTEC is observed in the March equinox in 2015 over Arba Minch station. Moreover, both the arithmetic mean GPS-derived and modelled VTEC values, generally, show maximum and minimum values in the equinoctial and June solstice months, respectively in 2014–2015. However, in 2013, the minimum and maximum arithmetic mean GPS-derived values are observed in the March equinox and December solstice, respectively. The results also show that, even though overestimation of the modelled VTEC has been observed on most of the hours, all versions of the model are generally good to estimate both the monthly and seasonal diurnal hourly VTEC values, especially in the early morning hours (00:00–03:00?UT or 03:00–06:00?LT). However, it has also been shown that the IRI 2007 and IRI 2012 versions generally perform best in matching the diurnal GPS derived TEC values as compared to that of the IRI 2016 version. In addition, the IRI 2012 version with IRI2001 option for the topside electron density shows the highest overestimation of the VTEC as compared to the other options. None of the versions of the IRI model are proved to be able to capture the effects of geomagnetic storms.  相似文献   

7.
The aim of this paper is to investigate various aspects of the International Reference Ionosphere (IRI) performance in European area and to evaluate its accuracy and efficiency for: long term prediction of the critical frequencies foF2 and the maximum usable frequencies (MUF); using storm-time correction option (ST); the total electron content (TEC) and the maximum observable frequency (MOF) updating. Data of foF2, TEC, MOF are related to 2005. It is obtained that median values of foF2 can be predicted with the mean error σ(med)∼ 0.49 MHz. For median values of MUF absolute σ was 1.39 MHz and relative σr was 8.8%. For instanteneous values estimates are increased to 1.58σ(med) MHz for foF2 and could reach 3.84 MHz for MUF. Using correction ST-option and TEC values provided ∼30% improvement but TEC seems to be more preferable. However, from considered parameters of the IRI updating (ST-factor, TEC, MOF) the best results were demonstrated by MOF. Using the IRI2007 to calculate TEC gives 20–50% improvement of TEC correspondence to experimental values but this improvement is not enough to treat TEC without the IRI model adaptation.  相似文献   

8.
In this paper we present the results of the comparison of the retrieved electron density profiles of the Ionospheric Radio Occultation (IRO) experiment on board CHAMP (CHAllenging Minisatellite Payload), with the ground ionosonde profiles for the Polar Regions. IRO retrieved electron density profiles from CHAMP are compared with Canadian Advanced Digital Ionosonde (CADI) measurements at two vertical sounding stations well within the Polar Cap, Eureka (geog. 80°13′ N; 86°11′ W) and Resolute Bay (geog. 74°41′ N; 94°54′ W). We compared the ionospheric parameters such as the peak electron density of the F-layer (NmF2) and the peak height of the F-layer (hmF2) for a 3-year period, 2004–2006. CHAMP derived NmF2 shows reasonable agreement with the ionosonde retrieved NmF2 for both the stations (0.76 and 0.71 correlation coefficient, for Eureka and Resolute Bay, respectively) whereas the hmF2 agreement is not that acceptable (0.25 and 0.37 correlation coefficient, respectively). The hmF2 from vertical sounding showed less spread than the CHAMP hmF2.  相似文献   

9.
Experiments, which somewhat simulate the injection of monoenergetic (several keV) electron beams into the ionosphere, have been performed in the very large (17 m × 26 m) vacuum chamber at Johnson Space Center. Typical operating ranges were: Beam current, I (0–130 mA), beam energy, E (0.5–3 kV), magnetic field, (0.3–2 G), path length, L (10–20 m), and injection pitch angle, α(0–80°). Measurements were carried out in both steady state and pulsed modes. In steady state and for constant V, B, p, L, α, the beam plasma discharge (BPD) is abruptly ignited when the beam current is increased above a critical value; at currents below critical, the beam configuration appears grossly consistent with single particle behavior. If it is assumed that each of the experiment parameters can be varied independently, the critical current required for ignition obeys the empirical relationship at p < 2 × 10?5 torr:
IE3/2B0.7pL
The BPD is characterized by 1) a large increase in the plasma production rate manifested in corresponding increases in the 3914 Å light intensity and plasma density, 2) intense wave emissions in a broad band centered at the plasma frequency and a second band extending from a few kHz up to the electron cyclotron frequency, 3) scattering of the beam in velocity space and 4) radial expansion and pitch angle scattering of the primary beam leading to the disappearance of single particle trajectory features.Measurements of the BPD critical current have been carried out with an ion thruster (Kaufman engine) to provide a background plasma, and these indicate that the presence of an ambient plasma of typical ionospheric densities has little effect on the critical current relation.Measurements of wave amplitudes over a large frequency range show that the amplitude of waves near the plasma and electron cyclotron frequencies are too small to cause or sustain BPD, and that the important instabilities are at much lower frequency (~ 3 kHz in these measurements).  相似文献   

10.
An ultraviolet spectrometer, PHEBUS (Probing of Hermean Exosphere by Ultraviolet Spectroscopy) that is loaded onto the Mercury Planetary Orbiter in the BepiColombo mission is under development. The instrument, basically consisting of two spectrophotometers (EUV: 50–150 nm, FUV: 145–330 nm) and one scanning mirror, aims at measuring emission lines from molecules, atoms and ions present in the tenuous atmosphere of Mercury. The detectors employ microchannel plates as 2-D photon-counting devices. In order to enhance the quantum detection efficiencies, the surface of the top microchannel plates of EUV detector is covered with photocathode. This method enables us to identify weak atmospheric signatures such as neon (73.5 nm) and argon (104.8 nm), which could not be detected with conventional detector systems. This paper presents measurements of the performance characteristics of potassium bromide and esium iodide photocathodes, which have been evaluated for use in the EUV channel.  相似文献   

11.
As the prevailing tidal winds in the E region are generated by heating mechanisms, the dynamics of Es layers impacted by solar tides is a relevant theme in the space weather studies. This paper aims to identify the tidal wind component involved in the mechanism of formation and descending of the high type of sporadic layer (Esh). The Esh layers observed at altitudes between around 120 and 150 km in the Brazilian low latitude stations of Jataí and São José dos Campos during the months of April, June, September and December of 2016 are used in this analysis. The height variability and altitude descent of the Esh layers are analyzed from the h′Es parameter obtained by ionosonde data. In this study, the observational data are compared with the simulations generated by an extended version of the Ionospheric E-Region Model (MIRE). At higher altitudes in the E region, the results show that the prevailing tidal pattern and wind direction controlling the Esh layer formation and descent are different depending on month: (a) in April and June the zonal wind component and the associated semidiurnal tidal oscillations prevail, with some differences in terms of time of occurrence and descending speeds, and (b) in September and December the diurnal tidal periodicities become dominant, and both the meridional and zonal wind components seem to control the descending of the Esh layers. Since the role of the tidal periodicities and wind directions changed depending on the month, the results suggest a possible seasonal tidal wind pattern, which is not well understood from the present study but requires further investigation. Other relevant aspects of the observations and the modeling are highlighted and discussed.  相似文献   

12.
GPS satellites data obtained at Bhopal (23.16° N, 77.36° E, geomagnetic latitude 14.23° N) India were analyzed to study the TEC changes during several geomagnetic storms (−300 nT < Dst < −50 nT) occurred in 2005–2007. We had segregated the storms according to the Dst value, i.e. moderate storms (−100 nT < Dst ? −50 nT), strong storms (−150 nT < Dst < −100 nT), and severe storms (Dst less than −150 nT). Total of 21 geomagnetic storms (10 moderate, 9 strong, 2 severe) are considered for the present study. Deviation in vertical total electron content (VTEC) during the main phase of the storm was found to be associated with the prompt penetration of electric field originated due to the under-shielding and over-shielding conditions for almost all geomagnetic storms discussed in this paper. For most of the storms VTEC shows the positive percentage deviation during the main phase while it shows positive as well as the negative deviation during the recovery phase of the storms. The −80% deviation in VTEC was found for geomagnetic storm occurred on July 17, 2005 and the negative trend continued for recovery phase of the storm. This was mainly due to the thermospheric composition changes by Joule heating effect at auroral latitudes that generate electric field disturbance at low latitudes. Traveling ionospheric disturbances (TIDs) were responsible for the formation of wave like nature in VTEC for the storms occurred on May 15, 2005, whereas it was not observed for storm occurred on August 24, 2005.  相似文献   

13.
The paper presents an empirical model of the total electron content (TEC) response to the geomagnetic activity described by the Kp-index. The model is built on the basis of TEC measurements covering the region of North America (50°W–150°W, 10°N–60°N) for the period of time between October 2004 and December 2009. By using a 2D (latitude-time) cross-correlation analysis it is found that the ionospheric response to the geomagnetic activity over the considered geographic region and at low solar activity revealed both positive and negative phases of response. The both phases of the ionospheric response have different duration and time delay with respect to the geomagnetic storm. It was found that these two parameters of the ionospheric response depend on the season and geographical latitude. The presence of two phases, positive and negative, of the ionospheric response imposed the implementation of two different time delay constants in order to properly describe the two different delayed reactions. The seasonal dependence of the TEC response to geomagnetic storms is characterized by predominantly positive response in winter with a short (usually ∼5–6 h) time delay as well as mainly negative response in summer with a long (larger than 15 h) time delay. While the TEC response in March and October is more close to the winter one the response in April and September is similar to the summer one.  相似文献   

14.
The present paper proposes to discuss the ionospheric absorption, assuming a quasi-flat layered ionospheric medium, with small horizontal gradients. A recent complex eikonal model (Settimi et al., 2013b) is applied, useful to calculate the absorption due to the ionospheric D-layer, which can be approximately characterized by a linearized analytical profile of complex refractive index, covering a short range of heights between h1 = 50 km and h2 = 90 km. Moreover, Settimi et al. (2013c) have already compared the complex eikonal model for the D-layer with the analytical Chapman’s profile of ionospheric electron density; the corresponding absorption coefficient is more accurate than Rawer’s theory (1976) in the range of middle critical frequencies. Finally, in this paper, the simple complex eikonal equations, in quasi-longitudinal (QL) approximation, for calculating the non-deviative absorption coefficient due to the propagation across the D-layer are encoded into a so called COMPLEIK (COMPLex EIKonal) subroutine of the IONORT (IONOspheric Ray-Tracing) program ( Azzarone et al., 2012). The IONORT program, which simulates the three-dimensional (3-D) ray-tracing for high frequencies (HF) waves in the ionosphere, runs on the assimilative ISP (IRI-SIRMUP-P) discrete model over the Mediterranean area ( Pezzopane et al., 2011). As main outcome of the paper, the simple COMPLEIK algorithm is compared to the more elaborate semi-empirical ICEPAC formula (Stewart, undated), which refers to various phenomenological parameters such as the critical frequency of E-layer. COMPLEIK is reliable just like the ICEPAC, with the advantage of being implemented more directly. Indeed, the complex eikonal model depends just on some parameters of the electron density profile, which are numerically calculable, such as the maximum height.  相似文献   

15.
We built a new experimental apparatus (the “Satellite/lunar laser ranging Characterization Facility”, SCF) and created a new test procedure (the SCF-Test) to characterize and model the detailed thermal behavior and the optical performance of cube corner laser retroreflectors in space for industrial and scientific applications. The primary goal of these innovative tools is to provide critical design and diagnostic capabilities for Satellites Laser Ranging (SLR) to Galileo and other GNSS (Global Navigation Satellite System) constellations. The capability will allow us to optimize the design of GNSS laser retroreflector payloads to maximize ranging efficiency, to improve signal-to-noise conditions in daylight and to provide pre-launch validation of retroreflector performance under laboratory-simulated space conditions. Implementation of new retroreflector designs being studied will help to improve GNSS orbits, which will then increase the accuracy, stability, and distribution of the International Terrestrial Reference Frame (ITRF), to provide better definition of the geocenter (origin) and the scale (length unit).  相似文献   

16.
This paper describes the three-dimensional (3-D) electron density mapping of the ionosphere given as output by the assimilative IRI-SIRMUP-P (ISP) model for three different geomagnetic storms. Results of the 3-D model are shown by comparing the electron density profiles given by the model with the ones measured at two testing ionospheric stations: Roquetes (40.8°N, 0.5°E), Spain, and San Vito (40.6°N, 17.8°E), Italy. The reference ionospheric stations from which the autoscaled foF2 and M(3000)F2 data as well as the real-time vertical electron density profiles are assimilated by the ISP model are those of El Arenosillo (37.1°N, 353.3°E), Spain, Rome (41.8°N, 12.5°E), and Gibilmanna (37.9°N, 14.0°E), Italy. Overall, the representation of the ionosphere made by the ISP model is better than the climatological representation made by only the IRI-URSI and the IRI-CCIR models. However, there are few cases for which the assimilation of the autoscaled data from the reference stations causes either a strong underestimation or a strong overestimation of the real conditions of the ionosphere, which is in these cases better represented by only the IRI-URSI model. This ISP misrepresentation is mainly due to the fact that the reference ionospheric stations covering the region mapped by the model turn out to be few, especially for disturbed periods when the ionosphere is very variable both in time and in space and hence a larger number of stations would be required. The inclusion of new additional reference ionospheric stations could surely smooth out this concern.  相似文献   

17.
The Total Electron Content (TEC) from four locations in the Indian sector namely, Trivandrum (8.47°N, 76.91°E, Geomag.0.63°S, 0.3° dip), Waltair (17.7° N, 83.3°E, Geomag. 6.4°N, 20° dip), Bhopal (23.28°N, 77.34°E, Geomag.14.26°N, 33.2° dip), and Delhi (28.58°N, 77.21°E, Geomag.19.2°N, 43.4° dip) during a low sunspot year of 2004 are used to study the variabilities of the TEC. The day time TEC values are higher over Waltair and Bhopal compared to those at Trivandrum and Delhi. Considerable day-to-day variations in the diurnal values of TEC are observed at the anomaly crest locations. The observed GPS-TEC has been compared with the IRI-2007 model derived TEC considering three different options (IRI-2001, IRI-2001 corrected and Ne-Quick) available in the model for the topside electron density. The TEC derived with Ne-Quick and IRI-01 corrected options show better agreement with GPS-TEC while the TEC from IRI-01 method shows larger deviations. From the correlation analysis carried out between TEC value at 1300 h LT and solar indices parameters namely sunspot number (SSN), F10.7 and EUV, it is observed that the correlation is more during equinoctial months and less during summer months. The correlation coefficients observed over the anomaly locations, Bhopal and Delhi are lower compared to those at Trivandrum and Waltair.  相似文献   

18.
Chlorophyll and suspended sediment concentrations (SSC) and sea surface temperature (SST) are important parameters in assessing the productivity of coastal regions. Numerous rivers flow into the eastern (Ganga, Subernarekha, Mahanadi, Godavari, Krishna, Penner, and Kaveri) and western (Narmada, Tapti, and Indus) coasts of the Indian sub-continent. Using IRS P4 (Oceansat-1) Ocean Color Monitor (OCM) and Moderate Resolution Imaging Spectroradiometer (MODIS) data, we have retrieved chlorophyll, calcite, and SSC near the mouth of these rivers for the period during 2000–2004. The maxima of chlorophyll-a concentrations at the river mouth is much higher for the Himalayan and north India rivers (Ganga, Subernarekha, Mahanadi, and Indus) (10–14 mg/m3) compared to rivers in the southern parts of India (Kaveri and Penner) (∼4 mg/m3). The maxima of calcite concentration (∼45 moles/m3), chlorophyll (∼14 mg/m3), and sediment concentrations (∼9 g/m3) near river mouth are found to be influenced by river discharges (Ganga and Brahmaputra) during the monsoon season. The calcite concentration (∼45 moles/m3) at the mouth of Ganga river shows a major peak with the onset of monsoon season (June–July) followed by a maxima in chlorophyll-a with a time lag of 1–2 months. The Krishna, Kaveri, and Penner rivers show low chlorophyll concentrations (3–8 mg/m3), high calcite (0–40 moles/m3), and low SSC (<3 g/m3) compared to Narmada and Tapti rivers (chlorophyll-a 12–14 mg/m3, calcite 0–2 moles/m3, and SSC 13–19 g/m3). The Indus river shows similar behavior (maxima of chlorophyll ∼13 mg/m3 and SSC ∼8 g/m3) with respect to Ganga river except for high calcite concentration during winter months (∼25 moles/m3). The characteristics of the chlorophyll, calcite, and SSC at the mouth of these rivers show spatial and temporal variability along the eastern and westerns coasts of India which are found to differ widely. A comparison of the chlorophyll concentrations using OCM and MODIS data shows low chlorophyll concentrations in the Bay of Bengal as compared to the Arabian Sea.  相似文献   

19.
The representation of the topside ionosphere (the region above the F2 peak) is critical because of the limited experimental data available. Over the years, a wide range of models have been developed in an effort to represent the behaviour and the shape of the electron density (Ne) profile of the topside ionosphere. Various studies have been centred around calculating the vertical scale height (VSH) and have included (a) obtaining VSH from Global Positioning System (GPS) derived total electron content (TEC), (b) calculating the VSH from ground-based ionosonde measurements, (c) using topside sounder vertical Ne profiles to obtain the VSH. One or a combination of the topside profilers (Chapman function, exponential function, sech-squared (Epstein) function, and/or parabolic function) is then used to reconstruct the topside Ne profile. The different approaches and the modelling techniques are discussed with a view to identifying the most adequate approach to apply to the South African region’s topside modelling efforts. The IRI-2001 topside model is evaluated based on how well it reproduces measured topside profiles over the South African region. This study is a first step in the process of developing a South African topside ionosphere model.  相似文献   

20.
Using long-term (1998--2009) total electron content (TEC) measurements from the GPS global network including dense network of GPS sites in USA and Japan, we have obtained the first data regarding the spatio-temporal structure and the statistics of medium-scale traveling wave packets (MS TWPs) excited by the solar terminator (ST). Total amount of the detected TWPs exceeds 565,000. There is no correlation between TWPs occurrence and geomagnetic and solar activity. We found that the diurnal, seasonal and spectral MS TWPs characteristics are specified by the solar terminator (ST) dynamics. MS TWPs are the chains of narrow-band TEC oscillations with single packet’s duration of about 1–2 h and oscillation periods of 10–20 min. The total duration of chain is about 4–6 h. The MS TWPs spatial structure is characterized by a high degree of anisotropy and coherence at the distance of more than 10 wavelengths. Occurrence rate of daytime MS TWPs is high in winter and during equinoxes. Occurrence rate of nighttime MS TWPs has its peak in summer. These features are consistent with previous MS travelling ionosphere disturbance (TID) statistics obtained from 630-nm airglow imaging observations in Japan. In winter, MS TWPs in the northern hemisphere are observed 3–4 h after the morning ST passage. In summer, MS TWPs are detected 1.5–2 h before the evening ST appearance at the point of observations, but at the moment of the evening ST passage in the magneto-conjugate point. The obtained results are the first experimental evidence for the hypothesis of the ST-generated ion sound waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号