首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Gas-Grain Simulation Facility (GGSF) is a multidisciplinary experiment laboratory being developed by NASA at Ames Research Center for delivery to Space Station Freedom in 1998. This facility will employ the low-gravity environment of the Space Station to enable aerosol experiments of much longer duration than is possible in any ground-based laboratory. Studies of fractal aggregates that are impossible to sustain on Earth will also be enabled. Three research areas within exobiology that will benefit from the GGSF are described here. An analysis of the needs of this research and of other suggested experiments has produced a list of science requirements which the facility design must accommodate. A GGSF design concept developed in the first stage of flight hardware development to meet these requirements is also described.  相似文献   

2.
我们先前的一项研究工作表明,目前本实验室使用的开槽管微波腔的模式类似为TE111腔模式。对铷原子频标而言,这并不是最佳模式。最近我们对开槽管微波腔结构做了改进,并利用高频结构仿真软件(HFSS)仿真及实验证明,改进后的模式类似为TE011腔模式。这为我们设计出性能更高的铷原子频标物理系统奠定了基础。  相似文献   

3.
空间科学实验柜被动式减振系统研究   总被引:2,自引:0,他引:2  
载人航天二期我国将发展短期有人照料的空间实验室,将开展一系列空间科学实验.国际空间站和我国神舟飞船实际微重力水平测量结果表明,需采取必要的减振措施才能满足特殊科学实验要求,鉴于此对空间科学实验柜被动式减振系统进行了研究和设计.根据空间科学实验柜在载人航天器内的实际安放状态,对其进行了减振布局.将实验柜本身作为刚体,建立6自由度的减振系统动力学模型,然后在ADAMS中建立了空间科学实验柜及减振系统三维实体模型,对减振系统进行仿真,得出系统时域、频域及随机输入下的响应特性.对减振系统参数进行优化,提高了系统的减振效果.   相似文献   

4.
Two ESA facilities will be available for animal research and other biological experiments on the International Space Station: the European Modular Cultivation System (EMCS) in the US Lab "Destiny" and BIOLAB in the European "Columbus" Laboratory. Both facilities use standard Experiment Containers, mounted on two centrifuge rotors allowing either research in microgravity or acceleration studies with variable g-levels from 0.001 to 2.0 x g. Standard interface plates provide each container with power and data lines, gas supply (controlled CO2, O2 concentration and relative humidity), and--for EMCS only--connectors to fresh and waste water reservoirs. The experiment hardware inside the containers will be developed by the user, but ESA conducted a feasibility study for several kinds of Experiment Support Equipment with potential use for research on small animals: design concepts for experiments with insects, with aquatic organisms like rotifers and nematodes, and with small aquatic animals (sea urchin larvae, tadpoles, fish youngsters) are described in detail in this presentation. Also ESA's initial steps to support experiments with rodents on the Space Station are presented.  相似文献   

5.
Numerous types of exercise equipment have flown on manned space flights to evaluate and maintain crew members' physical condition while on orbit. Vibrations associated with the use of some exercise equipment cause concern among microgravity scientists who are usually looking for a quiescent environment in which to run their experiments. We discuss the impact of aerobic (bicycle ergometer, treadmill) and non-aerobic (resistance devices) exercise on the microgravity environment of the Space Shuttle Orbiters and the Mir Space Station. In general, characteristic vibration disturbances due to ergometer exercise show the pedalling frequency at 2.5 to 3 Hz and the crew members' body rocking side-to-side at about half the pedalling frequency. For treadmill exercise, the footfall frequency on the treadmill platform can be clearly seen in the 1 to 2 Hz range, along with upper harmonics. The use of resistance exercise devices does not typically cause vibrations. Several vibration isolation systems used on the Orbiters and planned for the International Space Station are introduced. Finally, the responses of specific experiments to exercise vibrations are outlined.  相似文献   

6.
The Cosmic Ray Energetics And Mass (CREAM) instrument is configured with a suite of particle detectors to measure TeV cosmic-ray elemental spectra from protons to iron nuclei over a wide energy range. The goal is to extend direct measurements of cosmic-ray composition to the highest energies practical, and thereby have enough overlap with ground based indirect measurements to answer questions on cosmic-ray origin, acceleration and propagation. The balloon-borne CREAM was flown successfully for about 161 days in six flights over Antarctica to measure elemental spectra of Z = 1–26 nuclei over the energy range 1010 to >1014 eV. Transforming the balloon instrument into ISS-CREAM involves identification and replacement of components that would be at risk in the International Space Station (ISS) environment, in addition to assessing safety and mission assurance concerns. The transformation process includes rigorous testing of components to reduce risks and increase survivability on the launch vehicle and operations on the ISS without negatively impacting the heritage of the successful CREAM design. The project status, including results from the ongoing analysis of existing data and, particularly, plans to increase the exposure factor by another order of magnitude utilizing the International Space Station are presented.  相似文献   

7.
铷原子频标TE111微波腔的仿真分析及实验   总被引:4,自引:1,他引:3  
使用AnsoftHFSS软件建立铷原子频标微波腔内加载集成泡的模型,仿真并分析了集成泡尺寸和安装位置对腔体谐振频率的影响,最后进行了实验验证。结果表明,仿真得出的结论和实验结果有一定的一致性,加载不同尺寸集成泡对微波腔谐振频率影响明显并且呈一定规律分布,这对于中微波腔的设计具有重要的参考价值。  相似文献   

8.
In 2004, Japan Aerospace Exploration Agency developed the engineered model of the Plant Experiment Unit and the Cell Biology Experiment Facility. The Plant Experiment Unit was designed to be installed in the Cell Biology Experiment Facility and to support the seed-to-seed life cycle experiment of Arabidopsis plants in space in the project named Space Seed. Ground-based experiments to test the Plant Experiment Unit showed that the unit needed further improvement of a system to control the water content of a seedbed using an infrared moisture analyzer and that it was difficult to keep the relative humidity inside the Plant Experiment Unit between 70 and 80% because the Cell Biology Experiment Facility had neither a ventilation system nor a dehumidifying system. Therefore, excess moisture inside the Cell Biology Experiment Facility was removed with desiccant bags containing calcium chloride. Eight flight models of the Plant Experiment Unit in which dry Arabidopsis seeds were fixed to the seedbed with gum arabic were launched to the International Space Station in the space shuttle STS-128 (17A) on August 28, 2009. Plant Experiment Unit were installed in the Cell Biology Experiment Facility with desiccant boxes, and then the Space Seed experiment was started in the Japanese Experiment Module, named Kibo, which was part of the International Space Station, on September 10, 2009 by watering the seedbed and terminated 2 months later on November 11, 2009. On April 19, 2010, the Arabidopsis plants harvested in Kibo were retrieved and brought back to Earth by the space shuttle mission STS-131 (19A). The present paper describes the Space Seed experiment with particular reference to the development of the Plant Experiment Unit and its actual performance in Kibo onboard the International Space Station. Downlinked images from Kibo showed that the seeds had started germinating 3 days after the initial watering. The plants continued growing, producing rosette leaves, inflorescence stems, flowers, and fruits in the Plant Experiment Unit. In addition, the senescence of rosette leaves was found to be delayed in microgravity.  相似文献   

9.
National Space Development Agency of Japan (NASDA) has developed aquatic animal experiment facilities for NASA Space Shuttle use. Vestibular Function Experiment Unit (VFEU) was firstly designed and developed for physiological research using carp in Spacelab-J (SL-J, STS-47) mission. It was modified as Aquatic Animal Experiment Unit (AAEU) to accommodate small aquatic animals, such as medaka and newt, for second International Microgravity Laboratory (IML-2, STS-65) mission. Then, VFEU was improved to accommodate marine fish and to perform neurobiological experiment for Neurolab (STS-90) and STS-95 missions. We have also developed and used water purification system which was adapted to each facility. Based on these experiences of Space Shuttle missions, we are studying to develop advanced aquatic animal experiment facility for both Space Shuttle and International Space Station (ISS).  相似文献   

10.
The isothermal dendritic growth apparatus (IDGA) is currently being designed by the Rensselaer Polytechnic Institute in cooperation with the NASA Lewis Research Center. We describe some of the generic features of this apparatus system including precise temperature control, accurate temperature measurement, modular photographic system, and telescience capability. We briefly mention other types of microgravity experiments which could make use of the IDGA facility with only minor modifications to the present design. The IDGA is currently being manifested on the Material Science Laboratory carrier and the United States Materials Laboratory I, as well as being considered for inclusion on the future Space Station. The IDGA can provide a carefully controlled long-duration microgravity environment as provided by the Shuttle orbiter and, ultimately, the Space Station. The intent of this paper is to acquaint researchers with the nature of this facility.  相似文献   

11.
The Long Duration Exposure Facility (LDEF), which encompassed 57 experiments with more than 10,000 test specimens, spent 69 months in low Earth orbit (LEO) before it was retrieved by the Space Shuttle in January 1990. Hundreds of LDEF investigators, after studying for over two years these retrieved test specimens and the onboard recorded data and systems hardware, have generated a unique first-hand view of the long term synergistic effects that the LEO environment can have on spacecraft. These studies have also contributed significantly toward more accurate models of the LEO radiation, meteoroid, manmade debris and atomic oxygen environments. This paper provides an overview of some of the many LDEF observations and the implications these can have on future spacecraft such as Space Station Freedom.  相似文献   

12.
Upon the last joint Soviet-French mission on the MIR Space Station, on December 1988, an experiment devoted to the collection and detection of cosmic dust and space debris has been deployed in space during 13 months.

A variety of sensors and collecting devices has make possible the study of effects and distribution of cosmic particles after recovery of exposed material. Remnants of particles, suitable for chemical identification are expected to be found within the stacked foil detectors. Discrimination between true cosmic particles and man-made orbital debris is expected.

Some preliminary results are presented here.  相似文献   


13.
14.
This paper evaluates the impact of residual acceleration noise on the estimation of the Earth’s time-varying gravity field for future low-low satellite-to-satellite tracking missions. The goal is to determine the maximum level of residual acceleration noise that does not adversely affect the estimation error. The Gravity Recovery And Climate Experiment (GRACE) has provided monthly average gravity field solutions in spherical harmonic coefficients for more than a decade. It provides information about land and ocean mass variations with a spatial resolution of ~350?km and with an accuracy within 2?cm throughout the entire Earth. GRACE Follow-on was launched in May 2018 to advance the work of GRACE and to test a new laser ranging interferometer, which measures the range between the two satellites with higher precision than the K-Band ranging system used in GRACE. Moreover, there have been simulation studies that show, an additional pair of satellites in an inclined orbit increases the sampling frequency and reduces temporal aliasing errors. Given the fact that future missions will likely continue to use the low-low satellite-to-satellite tracking formation with laser ranging interferometry, it is expected that the residual acceleration noise will become one of the largest error contributor for the time-variable gravity field solution. We evaluate three different levels of residual acceleration noise based on demonstrated drag-free systems to find a suitable drag-free performance target for upcoming geodesy missions. We analyze both a single collinear polar pair and the optimal double collinear pair of drag-free satellites and assume the use of a laser ranging interferometer. A partitioned best linear unbiased estimator that was developed, incorporating several novel features from the ground up is used to compute the solutions in terms of spherical harmonics. It was found that the suitable residual acceleration noise level is around 2?×?10?12?ms?2?Hz?1/2. Decreasing the acceleration noise below this level did not result in more accurate gravity field solutions for the chosen mission architecture.  相似文献   

15.
使用Ansoft HFSS软件分别仿真计算了氢原子频标中标准尺寸微波腔、蓝宝石部分介质充填微波腔和不同金属极片间距的磁控管微波腔,并分析了储存泡对谐振频率的影响,得到极片间距和储存泡对谐振频率的影响趋势,对于实际工作时主要影响谐振频率的极片间距的选择给出了建议。  相似文献   

16.
极小型氢频标磁控管微波腔的仿真设计   总被引:1,自引:0,他引:1  
用Ansoft HFSS仿真软件建立了极小型氢频标磁控管微波腔的几种模型结构,在给定腔体尺寸下,仿真了不同电极间距的空型和磁控管型微波腔谐振频率和品质因数,得出极小型氢频标磁控管微波腔的设计参数,并对实际设计中影响磁控管微波腔谐振频率的因素给出了建议。  相似文献   

17.
The Space Environment Viewing and Analysis Network (SEVAN) aims to improve the fundamental research on particle acceleration in the vicinity of the sun, on space weather effects and on high-energy physics in the atmosphere and lightning initiation. This new type of a particle detector setup simultaneously measures fluxes of most species of secondary cosmic rays, thus being a powerful integrated device for exploration of solar modulation effects and electron acceleration in the thunderstorm atmosphere. The SEVAN modules are operating at the Aragats Space Environmental Center (ASEC) in Armenia, in Croatia, Bulgaria, Slovakia, the Czech Republic (from 2017) and in India. In this paper, we present the most interesting results of the SEVAN network operation during the last decade. We present this review on the occasion of the 10th anniversary of the International Heliophysical Year in 2007.  相似文献   

18.
The Aragats Solar Environment Center provides real time monitoring of different components of secondary cosmic ray fluxes. We plan to use this information to establish an early warning alert system against extreme, very large solar particle events with hard spectra, dangerous for satellite electronics and for the crew of the Space Station. Neutron monitors operating at altitude 2000 and 3200 m are continuously gathering data to detect possible abrupt variations of the particle count rates. Additional high precision detectors measuring muon and electron fluxes, along with directional information are under construction on Mt. Aragats. Registered ground level enhancements, in neutron and muon fluxes along with correlations between different species of secondary cosmic rays are analyzed to reveal possible correlations with expected times of arrival of dangerous solar energetic particles.  相似文献   

19.
This paper briefly introduces the history of China's Manned Space Flight Program and concludes the experiments done since 2008, namely, a small satellite and a material science experiment. An outlook of future Chinese Space Station is also described at the end.   相似文献   

20.
One of the primary mission risks tracked in the development of all spacecraft is that due to micro-meteoroids and orbital debris (MMOD). Both types of particles, especially those larger than 0.1 mm in diameter, contain sufficient kinetic energy due to their combined mass and velocities to cause serious damage to crew members and spacecraft. The process used to assess MMOD risk consists of three elements: environment, damage prediction, and damage tolerance. Orbital debris risk assessments for the Orion vehicle, as well as the Shuttle, Space Station and other satellites use ballistic limit equations (BLEs) that have been developed using high speed impact test data and results from numerical simulations that have used spherical projectiles. However, spheres are not expected to be a common shape for orbital debris; rather, orbital debris fragments might be better represented by other regular or irregular solids. In this paper we examine the general construction of NASA’s current orbital debris (OD) model, explore the potential variations in orbital debris mass and shape that are possible when using particle characteristic length to define particle size (instead of assuming spherical particles), and, considering specifically the Orion vehicle, perform an orbital debris risk sensitivity study taking into account variations in particle mass and shape as noted above. While the results of the work performed for this study are preliminary, they do show that continuing to use aluminum spheres in spacecraft risk assessments could result in an over-design of its MMOD protection systems. In such a case, the spacecraft could be heavier than needed, could cost more than needed, and could cost more to put into orbit than needed. The results obtained in this study also show the need to incorporate effects of mass and shape in mission risk assessment prior to first flight of any spacecraft as well as the need to continue to develop/refine BLEs so that they more accurately reflect the shape and material density variations inherent to the actual debris environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号