首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In flares that occur behind the limb, the intense chromospheric (foot-point) part of the hard X-ray source is occulted, thus permitting good observations of the coronal component. Between 15 and 18 April 2002, RHESSI observed a series of small (GOES Class C) flares produced by the active region NOAA 9905 as it rotated behind the west limb. A preliminary analysis of the observed hard X-ray sources in the 17–18 April 2002 flares has confirmed that flare-associated sources of gradual 12–25 keV X-ray emission can exist in the corona at heights up to 27000 km.  相似文献   

2.
We present observations of a C9.4 flare on 2002 June 2 in EUV (TRACE) and X-rays (RHESSI). The multiwavelength data reveal: (1) the involvement of a quadrupole magnetic configuration; (2) loop expansion and ribbon motion in the pre-impulsive phase; (3) gradual formation of a new compact loop with a long cusp at the top during the impulsive phase of the flare; (4) appearance of a large, twisted loop above the cusp expanding outward immediately after the hard X-ray peak; and (5) X-ray emission observed only from the new compact loop and the cusp. In particular, the gradual formation of an EUV cusp feature is very clear. The observations also reveal the timing of the cusp formation and particle acceleration: most of the impulsive hard X-rays (>25 keV) were emitted before the cusp was seen. This suggests that fast reconnection occurred during the restructuring of the magnetic configuration, resulting in more efficient particle acceleration, while the reconnection slowed after the cusp was completely formed and the magnetic geometry was stabilized. This observation is consistent with the observations obtained with Yohkoh/Soft X-ray Telescope (SXT) that soft X-ray cusp structures only appear after the major impulsive energy release in solar flares. These observations have important implications for the modeling of magnetic reconnection and particle acceleration.  相似文献   

3.
The ‘standard’ thick target flare model predicts the existence of strong hard X-ray emission at the footpointsof a flare loop. However, Yohkoh observations suggest that up to 20% of events with data available in three or more Hard X-ray Telescope (HXT) channels show only a single source. Combining datasets from Yohkoh, the Solar and Heliospheric Observatory (SOHO), and Nobeyama Radio Heliograph (NoRH), we compare the characteristics of these single source events to double source events. The objective of this study is to determine whether these represent unresolved double footpoints, asymmetric electron deposition due to magnetic mirroring effects, or a genuine departure from the ‘standard’ model.  相似文献   

4.
Yohkoh has observed many long duration events permitting a statistical study of the properties of these interesting events. We have selected ten flares for analysis which have durations between 5 and 20 hours, and size ranging from C to X GOES class. Employing the Soft X-ray Telescope, the Bragg Crystal Spectrometer, GOES spacecraft, and ground-based H data, we examine the morphology, temperature, emission measure, location of the hard X-ray source, non-thermal velocities and upflows of the plasma at different stages in the flare development. Our results are used to address the question of the energy source that maintains the hot plasma at temperatures of several million degrees for many hours.  相似文献   

5.
Using the Yohkoh Hard X-Ray Telescope (HXT) data, we have examined motions of the hard X-ray (HXR) sources during 72 solar flares occurred from 1991 September to 2001 December. In these flares, we have found 198 intense sources that are presumably the chromospheric footpoints (FPs) of flare loops. The average velocity V and the velocity dispersion σ were determined by a linear regression for these sources. For 80% of them, the ratio of V to 3σ is larger than 1, strongly suggesting that the regular motions of the HXR sources dominate their chaotic motions.For 43 of 72 flares, coalignment of the HXT images with the photospheric magnetograms allows us to consider the HXR sources located on the both sides of the photospheric neutral line (NL) as the FP sources, and to distinguish between three main types of the FP motions. The type I is the motions of the HXR sources preferentially away from and nearly perpendicular to the NL. Less than 5% of the flares show this pattern of motion. In the type II, the sources move mainly along the NL in anti-parallel directions. Such motions have been found in 26% of flares. The type III involves a similar pattern of motions as the type II but all the HXR sources move in the same direction along the NL. Flares of this type constitute 30% of the flares. About 19% of flares can be described as a combination of these basic types. The remaining 20% of flares seem to be more complicated or less regular in the motion scale under consideration. An interpretation of results is suggested.  相似文献   

6.
It is believed that a large fraction of the total energy released in a solar flare goes initially into acceleratedelectrons. These electrons generate the observed hard X-ray bremsstrahlung as they lose most of their energy by coulomb collisions in the lower corona and chromosphere. Results from the Solar Maximum Mission showed that there may be even more energy in accelerated electrons with energies above 25 keV than in the soft X-ray emitting thermal plasma. If this is the case, it is difficult to understand why the Neupert Effect — the empirical result that for many flares the time integral of the hard X-ray emission closely matches the temporal variation of the soft X-ray emission — is not more clearly observed in many flares. From recent studies, it appears that the fraction of the released energy going into accelerated electrons is lower, on average, for smaller flares than for larger flares. Also, from relative timing differences, about 25% of all flares are inconsistent with the Neupert Effect. The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) is uniquely capable of investigating the Neupert Effec since it covers soft X-rays down to 3 keV (when both attenuators are out of the field of view) and hard X-rays with keV energy resolution, arcsecond-class angular resolution, and sub-second time resolution. When combined with the anticipated observations from the Soft X-ray Imager on the next GOES satellite, these observations will provide us with the ability to track the Neupert Effect in space and time and learn more about the relation between plasma heating and particle acceleration. The early results from RHESSI show that the electron spectrum extends down to as low as 10 keV in many flares, thus increasing the total energy estimates of the accelerated electrons by an order of magnitude or more compared with the SMM values. This combined with the possible effects of filling factors smaller than unity for the soft X-ray plasma suggest that there is significantly more energy in nonthermal electrons than in the soft X-ray emitting plasma in many flares.  相似文献   

7.
The energy content of nonthermal particles in solar flares is shared between accelerated electrons and ions. It isimportant for understanding the particle acceleration mechanism in solar flares. Yohkoh observed a few intense flares which produced both strong gamma-ray lines and electron bremsstrahlung continuum. We analyze energy spectra of X-class solar flares on October 27, 1991(X6.1), November 6, 1997 (X9.4), July 14, 2000 (X5.7) and November 24, 2000 (X2.3). The accelerated electron and proton spectra are derived from a spectral analysis of their high-energy photon emission and the energy contents in >1 MeV electrons and >10 MeV protons are estimated to be 6×l028 – 4×1030 and 2×1028 – 5×1029 erg, respectively. We study the flare to flare variation in the energy content of >1 MeV electrons and >10 MeV protons for the four Yohkoh gamma-ray flares. Ratios of >1 MeV electron energy content to >10 MeV proton energy content are roughly within an order of magnitude.  相似文献   

8.
太阳耀斑显著的热和非热事件的统计特征   总被引:1,自引:1,他引:0  
本文利用GOES卫星和SMM卫星软、硬X射线耀斑观测资料,分析耀斑中软、硬X射线辐射流量的分布,发现太阳耀斑存在着显著的热事件(PT事件)和显著的非热事件(PNT事件),它们主要特征是:(1)PT事件为缓变型耀斑,PNT事件为脉冲型耀斑;(2)PT事件的硬X射线谱较软,PNT事件能谱较硬;(3)PNT事件非热能量释放速率比PT事件快3—10倍;(4)耀斑发展趋缓慢,PT事件中软X射线峰值流量越大;(5)耀斑中PNT事件约占60%,PT事件约占40%.最后定性讨论了产生PT和PNT事件的可能机制.   相似文献   

9.
Gradual rise and fall type solar radio flares recorded at 37 GHz (8 mm wavelength) are analysed and compared with simultaneous soft and hard X-ray events. Emission measures and plasma temperatures were calculated from the GOES soft X-ray data, and optically thin thermal bremsstrahlung flux at 37 GHz was calculated assuming the same emitting volumes. The main emission mechanism behind the millimeter wave radio flares was determined to be thermal bremsstrahlung although many of the flares showed impulsive, non-thermal features. The radio flares were compared with simultaneous BATSE hard X-ray events, but significant temporal correlation was not found. It is suggested that there might be two different types of gradual radio flares, connected to gradual or more impulsive hard X-ray events. Another explanation for the observed two types would be different viewing angles to the emitting regions.  相似文献   

10.
太阳质子耀斑X射线辐射特征及质子事件警报   总被引:7,自引:3,他引:4  
太阳质子耀斑X射线辐射特征的研究, 为太阳质子事件的警报提供一个重要的途径和方法。本文分析了第21周太阳活动峰年(1977—1986)期间质子耀斑和相应的GOES和SMM卫星观测的X射线辐射资料, 结果表明:大部分质子耀斑的硬X射线峰值流量FHX≥104s/c;积分流量F0≥106counts;硬X射线辐射到达峰值时间TR≥100s;持续时间TD≥103s;X光子最高能量Ex≥300keV;平均能谱指数√r≤3.5;高能时延TL≥10s。利用这些X射线暴的特征参数, 对第21周峰年大质子事件作警报检验, 结果是:报准率为94%, 虚报率为40%。   相似文献   

11.
Japanese future space programs for high energy astrophysics are presented. The Astro-E2 mission which is the recovery mission of the lost Astro-E has been approved and now scheduled to be put in orbit in early 2005. The design of the whole spacecraft remains the same as that of Astro-E, except for some improvements in the scientific instruments. In spite of the five years of delay, Astro-E2 is still powerful and timely X-ray mission, because of the high energy resolution spectroscopy (FWHM 6 eV in 0.3–10 keV) and high-sensitivity wide-band spectroscopy (0.3–600 keV). The NeXT (New X-ray Telescope) mission, which we propose to have around 2010, succeeds and extends the science which Astro-E2 will open. It will carry five or six sets of X-ray telescopes which utilize super-mirror technology to enable hard X-ray imaging up to 60–80 keV. In mid-2010s, we would participate in the European XEUS mission, which explores the early (z>5) “hot” universe.  相似文献   

12.
Yohkoh soft X-ray observations have revealed coronal X-ray plasma ejections and jets associated with solar flares. We have studied an X-ray plasma ejection on 1993 November 11 in detail, as a typical example of X-ray plasma ejections (possibly plasmoids expected from the reconnection model). The results are as follows: (1) The shape of the ejected material is a loop before it begins to rise. (2) The ejecta are already heated to 5 – 16 MK before rising. (3) The kinetic energy of the ejecta is smaller than the thermal energy content of the ejecta. (4) The thermal energy of the ejecta is smaller than that of the flare regions. (5) The acceleration occurs during the impulsive phase. These results are compared with the characteristics of X-ray jets, and a possible interpretation (for both plasmoids and jets) based on the magnetic reconnection model is briefly discussed.  相似文献   

13.
A series of three flares of GOES class M, M and C, and a CME were observed on 20 January 2004 occurring in close succession in NOAA 10540. Types II, III, and N radio bursts were associated. We use the combined observations from TRACE, EIT, Hα images from Kwasan Observatory, MDI magnetograms, GOES, and radio observations from Culgoora and Wind/ WAVES to understand the complex development of this event. We reach three main conclusions. First, we link the first two impulsive flares to tether-cutting reconnections and the launch of the CME. This complex observation shows that impulsive quadrupolar flares can be eruptive. Second, we relate the last of the flares, an LDE, to the relaxation phase following forced reconnections between the erupting flux rope and neighbouring magnetic field lines, when reconnection reverses and restores some of the pre-eruption magnetic connectivities. Finally, we show that reconnection with the magnetic structure of a previous CME launched about 8 h earlier injects electrons into open field lines having a local dip and apex (located at about six solar radii height). This is observed as an N-burst at decametre radio wavelengths. The dipped shape of these field lines is due to large-scale magnetic reconnection between expanding magnetic loops and open field lines of a neighbouring streamer. This particular situation explains why this is the first N-burst ever observed at long radio wavelengths.  相似文献   

14.
Four multi-loops or arcade flares showing strong impulsive soft X-ray brightenings on Yohkoh/SXT frames have been selected. By inspection of light curves of individual pixels, the areas of brightening have been localised. Evidences that non-thermal electron beams easily penetrate through whole flaring structures have been found. In some footpoints of the flaring structures during the impulsive phase the evidence of the chromospheric evaporation driven by non-thermal electron beams has been detected. The velocities of the upflowing plasma have been estimated. Derived values are in a wide range among 220 and 750 km/s. The SXT images of the investigated flares have been compared with the Yohkoh/HXT images. Generally good spatial and temporal coincidence between soft and hard X-ray emission from footpoints of flaring structures during the impulsive phase have been found but some exceptions occur. An explanation of the reported exceptions based on the magnetic field configuration has been proposed.  相似文献   

15.
We discuss a class of microwave flares whose source regions exhibit a distinctive spatial configuration; the primaryenergy release in these flares results from the interaction between emerging magnetic flux and an existing overlying region. Such events typically exhibit radio, X-ray and EUV emission at the main flare site (the site of interaction) and in addition radio emission at a remote site up to 1 × 105 km away in another active region. We have identified and studied more than a dozen microwave flares in this class, in order to arrive at some general conclusions on reconnection and energy release in such solar flares. Typically, these flares show a gradual rise showing many subsidiary peaks in both radio and hard X-ray light curves with a quasi-oscillatory nature with periods of 5–6 seconds, a bright compact X-ray & EUV emitting loop in the main flare source, a delay of the radio emission from the remote source relative to the main X-ray-emitting source. The magnetic field in the main flare site changes sharply at the time of the flare, and the remote site appears to be magnetically connected to the main flare site.  相似文献   

16.
In this paper, the twist values of ‘S’-shape transequatorial loops (TLs) from 1991 to 2001 are calculated, GOES soft X-ray flares dataset of the active regions connected by these TLs are investigated. The result shows the twist value of the TLs has a weak relation with the flare flux. There is no clear correlation between the twist value and the distance between the footpoint of TLs and location of flare in the corresponding active regions.  相似文献   

17.
In this paper, we analyze the footpoint motion of two large solar flares using observations made by the Transition Region and Coronal Explorer (TRACE) and Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The two flares are the M5.7 flare of March 14, 2002 and the X10 flare of October 29, 2003. They are both classical two-ribbon flares as observed in TRACE 1600 or 171 Å images and have long-duration conjugate hard X-ray (HXR) footpoint emission. We use the ‘center-of-mass’ method to locate the centroids of the UV/EUV flare ribbons. The results are: (1) The conjugate UV/EUV ribbons and HXR footpoints of the two flares show a converging (inward) motion during the impulsive phase. For the two flares, the converging motion lasts about 3 and 10 min, respectively. The usual separation (outward) motion for the flare ribbons and footpoints take place only after the converging motion. (2) During the inward and the outward motion, the conjugate ribbons and footpoints of the two events exhibit a strong unshear motion. In obtaining above results, TRACE UV/EUV and RHESSI HXR data show an overall agreement. The two events demonstrate that the magnetic reconnection for the flares occurs in highly sheared magnetic field. Furthermore, the results support the magnetic model constructed by Ji et al. [Ji, H., Huang, G., Wang, H. Astrophys. J. 660, 893–900, 2007], who proposed that the contracting motion of flaring loops is the signature of the relaxation of sheared magnetic fields.  相似文献   

18.
It has been justifiably questioned if the black hole candidates (BHCs) have “hard surface” why Type I X-ray bursts are not seen from them [Narayan, R., Black holes in astrophysics, New J. Phys, 7, 199–218, 2005]. It is pointed out that a “physical surface” need not always be “hard” and could be “gaseous” in case the compact object is sufficiently hot [Mitra, A., The day of the reckoning: the value of the integration constant in the vacuum Schwarzschild solution, physics/0504076, p1–p6, 2005; Mitra, A., BHs or ECOs: A review of 90 years of misconceptions, in: Focus on Black Holes Research, Nova Science Pub., NY, p1–p94, 2005]. Even if a “hard surface” would be there, presence of strong intrinsic magnetic field could inhibit Type I X-ray burst from a compact object as is the case for Her X-1. Thus, non-occurrence of Type I bursts actually rules out those alternatives of BHs which are either non-magnetized or cold and, hence, is no evidence for existence of Event Horizons (EHs). On the other hand, from the first principle, we again show that the BHCs being uncharged and having finite masses cannot be BHs, because uncharged BHs have a unique mass M = 0. Thus the previous results that the so-called BHCs are actually extremely hot, ultramagnetized, Magnetospheric Eternally Collapsing Objects (ECOs) [Robertson, S., Leiter, D., Evidence for intrinsic magnetic moment in black hole candidates, Astrophys. J., 565, 447–451, (astro-ph/0102381), 2002 ; Robertson, S., Leiter, D., MECO model of galactic black hole candidates and active galactic nuclei, in: New Developments in Black Hole Research, Nova Science Pub., NY, p1–p44, astro-ph/0602453, 2005] rather than anything else get reconfirmed by non-occurrence of Type I X-ray bursts in BHCs.  相似文献   

19.
The active region, AR#9393, produced a number of intense flares during March–April 2001. In this paper, we report the analysis of an X1.1 flare event of April 2, 2001 and its associated coronal mass ejection. The timing and location of the Hα eruption, radio burst activities, and the onset of mass ejection suggest an energy release that occurred close to the surface of the sun. At this region, as shown by the magnetogram, X-ray and EUV images, the field configuration was complex and the 3-D extrapolation revealed the presence of a magnetic null point. Results also suggest that the energy release is followed by the magnetic reconnection between the low-lying loops near the separator point and outlying loops. This study provides the support for the magnetic break-out process to trigger the energy release in eruptive flare event.  相似文献   

20.
We have studied soft and hard X-ray images of 13 solar flares from six active regions observed by the Hard X-ray Imaging Spectrometer (HXIS). Our results indicate the presence of pre-hard X-ray burst excesses in the 11.5–30.0 keV range, indicating a slow buildup of the acceleration process or a strong preheating. During the impulsive phase, all of the events show the simultaneous energization of neighboring field structures, which, in the case we show in some detail, share about equal amounts of the released energy. This association seems to be indicative of strong acceleration and energy release triggered by the interaction between magnetic loops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号