首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
综合热力学模型的平流层飞艇上升轨迹优化   总被引:1,自引:1,他引:0  
针对平流层飞艇的上升轨迹优化问题,综合热力学模型进行了研究.主要分析了飞艇基本热力学行为,研究了蒙皮及内部气体的能量方程并建立了详细的飞艇动力学和运动学模型.在热力学、动力学和运动学分析的基础上,建立了以飞行时间为优化目标的平流层飞艇的轨迹优化模型.利用直接配点法将轨迹优化问题转化为非线性优化问题,再通过非线性求解器SNOPT(Sparse Nonlinear Optimizer)对不同场景的问题进行最优化轨迹求解.优化结果表明:热力学效应对优化轨迹有较大影响,在上升过程中,太阳能辐射为主要影响因素,另外风场也对换热量有一定影响.  相似文献   

2.
This paper concerns optimal trajectory generation and nonlinear tracking control for stratospheric airship platform of VIA-200. To compensate for the mismatch between the point-mass model of optimal trajectory and the 6-DOF model of the nonlinear tracking problem, a new matching trajectory optimization approach is proposed. The proposed idea reduces the dissimilarity of both problems and reduces the uncertainties in the nonlinear equations of motion for stratospheric airship. In addition, its refined optimal trajectories yield better results under jet stream conditions during flight. The resultant optimal trajectories of VIA-200 are full three-dimensional ascent flight trajectories reflecting the realistic constraints of flight conditions and airship performance with and without a jet stream. Finally, 6-DOF nonlinear equations of motion are derived, including a moving wind field, and the vectorial backstepping approach is applied. The desirable tracking performance is demonstrated that application of the proposed matching optimization method enables the smooth linkage of trajectory optimization to tracking control problems.  相似文献   

3.
This paper reports a numerical investigation on the effects of water vapor condensing inside the air bag of a stratospheric airship on its ascending performance. The kinetic and thermal model considering vapor condensation was established, based on which a computer program was written in Fortran. The simulation results show that the vapor condensation remarkably affects the kinetic and thermal characteristics of the stratospheric airship in the ascent process. During the ascent process below 11 km, a large amount of latent heat is released when the water vapor in the air inside the air bag of the stratospheric airship condenses, which results in the increase of the temperature and the reduction of the weight of the air in the air bag, causing the airship to speed up, the accelerated expansion of the helium, and the decrease of the helium temperature in the helium bag. When the flight altitude is higher than 11 km, the effect of vapor condensation on the kinetic and thermal characteristics of the stratospheric airship is negligible because vapor is virtually nonexistent in the air.  相似文献   

4.
The ability to achieve long-endurance station-keeping flights makes stratospheric airships desirable platforms for the provision of communication and surveillance services. To maintain long-endurance flights, it is necessary to consider the problem of energy consumption. In this paper, we discuss long-endurance flight scenarios of stratospheric airships in the presence of thermal effects. The balance between buoyancy and gravity is influenced by thermal effects during the diurnal cycle. We perform a theoretical analysis based on the helium’s mass, pressure differential, and altitude as the main factors. To verify the effectiveness of the control over the pressure differential and the altitude, three long-endurance flight scenarios are proposed and compared. Then, the corresponding optimization problems are constructed to determine the energy-minimum flight. Finally, further efforts are made to reduce energy consumption. The realization and limitations of two strategies for improvement are analyzed. A comparison with other scenarios shows the effectiveness of energy conservation. The study in this paper thus provides a reference for station-keeping applications of stratospheric airships.  相似文献   

5.
As the lighter-than-air (LTA) flight vehicle, the stratospheric airship is a desirable platform to provide communication and surveillance services. During the ascent from sea-level to the mission altitude, the volume of the lifting gas may change significantly, which will result in the change of the center-of-buoyancy (CB). A general calculation method is developed to specify CB for the stratospheric airship with a double-ellipsoid hull and an arbitrary number of the gas cells. The cross-section-integral (CSI) method is used as a basic calculation scenario to specify CB. Considering the complexity in determining the boundary between the helium and air in the gas cell, a searching algorithm is put forward and the specification of CB can be conducted by the iterative calculation. As an important application, the stable condition of the pitch angle is analyzed when the change of CB is involved. Under different initial configurations, the stable pitch angle of the stratospheric airship during the ascent is specified and compared, which shows the advantages of the multi-gas-cell configuration. The results of this paper may provide an important reference for the engineering application of the stratospheric airship.  相似文献   

6.
平流层飞艇是一种新型的长航时临近空间飞行器,具有驻空高度高、驻空时间长、承载能力大、使用效费比高等特点,在对地观测及通信中继等领域具有广泛应用前景。但是该飞行器系统十分复杂,技术与设计实现难度大,总体设计需要考虑的基础问题及解决方案尚不完全明晰。根据平流层大气风场、温度和压力的基础特征,考虑平流层环境对平流层飞艇总体设计的影响,根据空气动力学与热力学基本理论,分析平流层飞艇的显著特征及与常规低空飞艇的区别,研究这些基础问题对平流层飞艇总体设计的影响,为平流层飞艇技术发展提供建议和参考。   相似文献   

7.
Stratospheric airship is a new kind of aerospace system which has attracted worldwide developing interests for its broad application prospects. Based on the trajectory linearization control (TLC) theory, a novel trajectory tracking control method for an underactuated stratospheric airship is presented in this paper. Firstly, the TLC theory is described sketchily, and the dynamic model of the stratospheric airship is introduced with kinematics and dynamics equations. Then, the trajectory tracking control strategy is deduced in detail. The designed control system possesses a cascaded structure which consists of desired attitude calculation, position control loop and attitude control loop. Two sub-loops are designed for the position and attitude control loops, respectively, including the kinematics control loop and dynamics control loop. Stability analysis shows that the controlled closed-loop system is exponentially stable. Finally, simulation results for the stratospheric airship to track typical trajectories are illustrated to verify effectiveness of the proposed approach.  相似文献   

8.
张磊 《深空探测学报》2019,6(4):391-397
面向月球采样返回任务分析需求,对月面上升段的轨迹优化及燃料消耗影响因素进行了研究。基于上升器运动模型,建立以燃料消耗最优为目标考虑入轨约束的轨迹优化模型,通过Gauss伪谱法和序列二次规划求解上升过程最优推力方向。改变运动模型中的初始推重比、入轨约束中的目标轨道参数,根据轨迹优化结果得到对应的燃料消耗,分析了这些因素对上升器燃料消耗的影响。针对上升器非共面起飞的问题,提出了上升偏航、升交点调整、倾角调整3种方案,从燃料消耗的角度分析了各方案的适用情况,为未来工程应用提供参考。  相似文献   

9.
平流层飞艇太阳能源系统研究   总被引:3,自引:0,他引:3  
以平流层太阳能飞艇平台为背景,对平流层太阳能飞艇能源系统展开了分析和研究。文中建立了飞艇表面太阳能电池接收太阳直接辐射、散射辐射、反射辐射的模型。利用该模型对某飞艇太阳能电池进行计算,结果显示飞艇接收的太阳辐射能量与飞艇的工作纬度、季节、太阳能电池阵列表面面积、飞行姿态密切相关。当飞艇的脊背从日出到日落时刻正对太阳光线时,太阳能电池接收到的太阳辐射能量将是最大的。  相似文献   

10.
准确掌握储能电池的实际电量是确保平流层飞艇实现长航时飞行的关键因素之一。首先,建立了平流层飞艇能源系统仿真模型,对能量输入和消耗进行动态分析。随后,对储能电池进行不同电流倍率的充放电测试,采用多项式拟合的方法,根据测试数据建立了储能电池充放电过程中荷电状态(SOC)、剩余放电时间(RDT)、剩余充电时间(RCT)的分析模型。最后,结合能源系统能量输入、消耗模型和储能电池模型进行飞行模拟仿真,获取各部分变化数据,与已有试验数据进行量化对比分析。结果表明:所构建储能电池模型在SOC、RDT、RCT的计算误差分别小于3%、1.5%、1.5%,能够准确反映电池工作过程中SOC、RDT、RCT的变化,可为平流层飞艇平台制定优化的飞行策略提供量化支撑。   相似文献   

11.
对一类气囊内外压差恒定的平流层软式飞艇,在考虑大气密度、温度变化以及大气风场的基础上,建立了飞艇三维空间运动的动力学模型;并针对能量消耗最少和航行时间最短两个指标函数,利用高斯伪谱法设计了飞艇从平流层返回地面的航迹,并对飞艇飞行高度、速度以及推力等状态变化进行分析研究.  相似文献   

12.
针对飞跃器在月球表面飞跃转移轨迹设计问题,提出了基于凸优化方法的整个飞跃过程燃料最优轨迹设计方法。与经典凸优化方法对轨迹分段求解后再拼接得到全轨迹设计的方法不同,在假设垂直上升、着陆时间固定条件下,根据实际工程需要对轨迹进行了分段设计约束,利用黄金分割法搜索上升着陆时间,通过将原问题转化为求解一个二阶锥问题得到了全飞行过程燃料最优轨迹,解决了经典方法中分段最优但全任务过程非最优的问题。仿真结果表明,在同样满足分段约束情况下,分段凸优化方法采用不同垂直起降速度约束时燃耗分别为25.7207kg和 25.3903kg,而全程凸优化方法的燃料消耗为24.9682kg,优于分段凸优化的结果。  相似文献   

13.
When a stratospheric airship free floats at pressure altitude, the sideslip angle of the airship is neither random nor against the wind, but is stable on certain values. According to classical potential flow theory, a simplified two-dimensional ellipse and three-dimensional ellipsoid are firstly analyzed respectively, which implied that the airship could present crosswind orientation. The numerical investigations (CFD) on the yaw stability based on a bare hull and a finned airship are employed for verifying the theory conclusion. It is found that the finned airships can remain stable when its sideslip Angle is 55–70°, which is less than 90° of the stable angle of the ellipsoid and bare hull, but statically unstable at low sideslip angles, its static instability is similar to that of dynamic flight. Then the fight data of three stratospheric airships is analyzed. The yaw stability in flight data generally agrees with expectations drawn of theoretical and numerical simulation. These investigations serve to provide references for yaw control and configuration design of airships.  相似文献   

14.
针对复杂多约束条件下空天飞机上升段燃料最优轨迹优化问题,提出一种基于高斯伪谱法的上升段轨迹优化策略.依据发动机的推力特性将上升轨迹合理分段,使原最优控制问题转化为多段最优控制问题后,采用高斯伪谱法进行并行优化计算.数值仿真结果表明采用这种轨迹优化策略能够满足组合动力系统工作模态转换时对飞行状态的约束条件,可以在较短的时间内完成高精度的上升段轨迹优化任务,从而验证了该方法的有效性.  相似文献   

15.
This paper presents a novel approach for station-keeping control of a stratospheric airship platform in the presence of parametric uncertainty and external disturbance. First, conceptual design of the stratospheric airship platform is introduced, including the target mission, configuration, energy sources, propeller and payload. Second, the dynamics model of the airship platform is presented, and the mathematical model of its horizontal motion is derived. Third, a fuzzy adaptive backstepping control approach is proposed to develop the station-keeping control system for the simplified horizontal motion. The backstepping controller is designed assuming that the airship model is accurately known, and a fuzzy adaptive algorithm is used to approximate the uncertainty of the airship model. The stability of the closed-loop control system is proven via the Lyapunov theorem. Finally, simulation results illustrate the effectiveness and robustness of the proposed control approach.  相似文献   

16.
In the presence of unknown disturbances and model parameter uncertainties, this paper develop a nonlinear backstepping sliding-mode controller (BSMC) for trajectory tracking control of a stratospheric airship using a disturbance-observer (DO). Compared with the conventional sliding mode surface (SMS) constructed by a linear combination of the errors, the new SMS manifold is selected as the last back-step error to improve independence of the adjustment of the controller gains. Furthermore, a nonlinear disturbance-observer is designed to process unknown disturbance inputs and improve the BSMC performances. The closed-loop system of trajectory tracking control plant is proved to be globally asymptotically stable by using Lyapunov theory. By comparing with traditional backstepping control and SMC design, the results obtained demonstrate the capacity of the airship to execute a realistic trajectory tracking mission, even in the presence of unknown disturbances, and aerodynamic coefficient uncertainties.  相似文献   

17.
平流层风场环境对临近空间低速飞行器驻空飞行性能有重要影响。研究了基于PSO-BP神经网络的平流层区域风场建模与快速预测方法,根据历史风场数据,采用主成分分析法对数据进行降维处理,通过BP神经网络对风场进行预测建模,利用粒子群优化(PSO)算法对其进行优化,采用Biharmonic样条曲面插值方法构建区域预测风场。以南海地区5年历史风场为对象,对比分析了基于BP神经网络和基于PSO-BP神经网络的风场预测模型,结果表明:使用具有全局寻优特性的PSO算法改进BP神经网络,能够有效避免传统BP神经网络易陷入局部最优的缺点,提高预测精度;通过结合PSO-BP神经网络预测与Biharmonic样条曲面插值,可实现区域风场的预测。研究结果可为临近空间低速飞行器的轨迹规划与区域驻留等任务的高精度区域快速预报风场提供解决途径。   相似文献   

18.
A predictability of the stratospheric zonal winds above 38 km during the turnaround is an essential parameter for planning of the high-altitude scientific balloon flights. This information is more relevant in the case of Hyderabad balloon facility which is closer to equator and has much more unstable wind reversal patterns which appears to have changed enormously during the last decade probably in correlation with the global warming. With a majority of our flights reaching the altitudes of 38–42 km and the requirement of long float durations, a prior knowledge of wind pattern during the summer and winter turnaround seasons is highly desirable. Furthermore, the flight operation corridor for balloon flights from Hyderabad is limited to 400 km and though in the west direction there are flat lands, in all other three directions, the landscape is dotted by water bodies, reserve forests and hilly terrain, and therefore need of such a data is essential. In order to establish the climatology of the stratospheric winds and study their inter-annual variability over Hyderabad for the turnaround periods, we have made a detailed analysis of the United Kingdom Meteorological office data between 2000 and 2007, to derive average wind parameters (magnitude, direction) at different ceiling altitudes above 38 km. These results can be used only as general trend of stratospheric wind and should not be the limitation of the UKMO Data.  相似文献   

19.
载人火星探测飞行方案   总被引:1,自引:0,他引:1  
对世界各国载人火星探测的研究情况进行了简要综述,研究了国内外有关载人火星探测飞行方案,提出了载人火星探测方案确定的原则和方案基本思想.给出了一种载人火星探测飞行方案的总体设计,包括飞行轨道方案和载人火星飞船方案等.尤其对轨道设计的重要的两个参数——速度增量和飞行时间进行了详细计算.最后给出了飞行轨道选择、火星飞船从地球到火星和从火星返回地球等的轨道方案和火星飞船各组成部分方案的详细设计结果.  相似文献   

20.
为改进响应面协同优化(CO-RS,Collaborative Optimization based on Response Surface)方法的工程实用性,提出改进的CO-RS方法.在响应面建立中应用广义乘子法和信赖域法,取消响应面更新对梯度的依赖性.针对平流层飞艇的总体设计与优化问题,基于改进的CO-RS框架,进行了系统任务分析和学科耦合分析.对气动与推进子系统、结构子系统和能源子系统进行了学科分析,以最小化平流层飞艇的质量为目标,建立基于改进CO-RS框架的多学科设计优化(MDO,Multidisciplinary Design Optimization)模型和相应的学科分析模型.利用iSIGHT软件搭建求解平台,采用改进的CO-RS算法进行仿真计算,并得到合理结果,验证了所建立的MDO模型的合理性和改进的CO-RS算法在平流层飞艇总体设计优化中的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号