首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Observations using the Rossi X-ray Timing Explorer (RXTE) have discovered dozens of accreting neutron stars with millisecond spin periods in low-mass binary star systems. Eighteen are millisecond X-ray pulsars powered by accretion or nuclear burning or both. These stars have magnetic fields strong enough for them to become millisecond rotation-powered (radio) pulsars when accretion ceases. Few, if any, accretion- or rotation-powered pulsars have spin rates higher than 750 Hz. There is strong evidence that the spin-up of some accreting neutron stars is limited by magnetic spin-equilibrium whereas the spin-up of others is halted when accretion ends. Further study will show whether the spin rates of some accretion- or rotation-powered pulsars are or were limited by emission of gravitational radiation.  相似文献   

2.
With its ability to look at bright galactic X-ray sources with sub-millisecond time resolution, the Rossi X-ray Timing Explorer (RXTE) discovered that the X-ray emission from accreting compact stars shows quasi-periodic oscillations on the dynamical timescales of the strong field region. RXTE showed also that waveform fitting of the oscillations resulting from hot spots at the surface of rapidly rotating neutron stars constrain their masses and radii. These two breakthroughs suddenly opened up a new window on fundamental physics, by providing new insights on strong gravity and dense matter. Building upon the RXTE legacy, in the Cosmic Vision exercise, testing General Relativity in the strong field limit and constraining the equation of state of dense matter were recognized recently as key goals to be pursued in the ESA science program for the years 2015–2025. This in turn identified the need for a large (10 m2 class) aperture X-ray observatory. In recognition of this need, the XEUS mission concept which has evolved into a single launch L2 formation flying mission will have a fast timing instrument in the focal plane. In this paper, I will outline the unique science that will be addressed with fast X-ray timing on XEUS.  相似文献   

3.
Measurement of at least three independent parameters, for example, mass, radius and spin frequency, of a neutron star is probably the only way to understand the nature of its supranuclear core matter. Such a measurement is extremely difficult because of various systematic uncertainties. The lack of knowledge of several system parameter values gives rise to such systematics. Low mass X-ray binaries, which contain neutron stars, provide a number of methods to constrain the stellar parameters. Joint application of these methods has a great potential to significantly reduce the systematic uncertainties, and hence to measure three independent neutron star parameters accurately. Here, we review the methods based on: (1) thermonuclear X-ray bursts; (2) accretion-powered millisecond-period pulsations; (3) kilohertz quasi-periodic oscillations; (4) broad relativistic iron lines; (5) quiescent emissions; and (6) binary orbital motions.  相似文献   

4.
We discuss millisecond period brightness oscillations and surface atomic spectral lines observed during type I X-ray bursts from a neutron star in a low mass X-ray binary system. We show that modeling of these phenomena can constrain models of the dense cold matter at the cores of neutron stars. We demonstrate that, even for a broad and asymmetric spectral line, the stellar radius-to-mass ratio can be inferred to better than 5%. We also fit our theoretical models to the burst oscillation data of the low mass X-ray binary XTE J1814-338, and find that the 90% confidence lower limit of the neutron star’s dimensionless radius-to-mass ratio is 4.2.  相似文献   

5.
Although rotating neutron stars (NSs) have been regarded as being textbook examples of astrophysical particle acceleration sites for decades, details of the acceleration mechanism remain a mystery; for example, we cannot yet observationally distinguish “polar cap” models from “outer gap” models. To solve the model degeneracy, it is useful to study similar systems with much different physical parameters. Strongly magnetized white dwarfs (WDs) are ideal for this purpose, because they have essentially the same system geometry as NSs, but differ largely from NSs in the system parameters, including the size, magnetic field, and the rotation velocity, with the induced electric field expected to reach 1013–1014 eV. Based on this idea, the best candidate among WDs, AE Aquarii, was observed with the fifth Japaneses X-ray satellite, Suzaku. The hard X-ray detector (HXD) on-board Suzaku has the highest sensitivity in the hard X-ray band over 10 keV. A marginal detection in the hard X-ray band was achieved with the HXD, and was separated from the thermal emission. The flux corresponds to about 0.02% of its spin-down energy. If the signal is real, this observation must be a first case of the detection of non-thermal emission from WDs.  相似文献   

6.
Kilohertz QPOs have been detected from more than 20 neutron stars in low-mass X-ray binaries. Several different ideas have been proposed for their generation, involving resonances, magnetic interactions, and sharp transitions in the accretion flow. We show that although details are uncertain at this time, it is clear that the stellar magnetic field has a dynamic influence on the accretion flow. We also discuss the inferences about dense matter and strong gravity that can be drawn from all models, and the qualitative advances expected with a future X-ray timing mission.  相似文献   

7.
Cool objects glow in the infrared. The gas and solid-state species that escape the stellar gravitational attraction of evolved late-type stars in the form of a stellar wind are cool, with temperatures typically ?1500 K, and can be ideally studied in the infrared. These stellar winds create huge extended circumstellar envelopes with extents approaching 10191019 cm. In these envelopes, a complex kinematical, thermodynamical and chemical interplay determines the global and local structural parameters. Unraveling the wind acceleration mechanisms and deriving the complicated structure of the envelopes is important to understand the late stages of evolution of ∼97% of stars in galaxies as our own Milky Way. That way, we can also assess the significant chemical enrichment of the interstellar medium by the mass loss of these evolved stars. The Herschel Space Observatory is uniquely placed to study evolved stars thanks to the excellent capabilities of the three infrared and sub-millimeter instruments on board: PACS, SPIRE and HIFI. In this review, I give an overview of a few important results obtained during the first two years of Herschel observations in the field of evolved low and intermediate mass stars, and I will show how the Herschel observations can solve some historical questions on these late stages of stellar evolution, but also add some new ones.  相似文献   

8.
I present a short overview of the behavior and properties of the two simultaneous kilohertz quasi-periodic oscillations (kHz QPOs) seen in the accreting millisecond X-ray pulsar SAX J1808.4–3658. I will focus on the behavior of the upper frequency QPO as a function of time and count rate as seen during the 2002 outburst of this source. I will also discuss briefly the correlated behavior of this QPO with QPOs at lower frequencies (several tens of hertz).  相似文献   

9.
MXB 0656-072 is an accreting X-ray pulsar with a Be star companion, showing notable emission in H. In October 2003 this system exhibited a large and extended X-ray outburst. RXTE observations during this outburst indicated a pulse period of 160.4 s and a cyclotron resonance scattering feature in the spectrum at 32 keV. This paper presents pulse profile analysis and phase-resolved X-ray spectroscopy of RXTE observations during this outburst.  相似文献   

10.
A recent multibeam pulsar survey of the outer Galactic plane at Parkes has discovered the first-known double-pulsar binary, a very compact double neutron star system in which both stars are observable as radio pulsars. In this review, we briefly describe the discovery and the studies which have been enabled by the unique properties of the system. These range from the most precise confirmation yet of the theory of general relativity, with the possibility of even more new tests and the measurement of second-order post-Newtonian effects, to studies of the magnetospheres and emission properties of the two pulsars. The discovery also results in a significant increase in the expected rate of occurrence of the mergers of double neutron star systems, and hence the rate of detection of such events by the new ground-based gravitational wave detectors.  相似文献   

11.
I discuss methods and results in the use of photo-polarimetry and spectro-polarimetry in the studies of magnetic cataclysmic variables. In particular I show how polarimetry can be used to derive the geometry of the accretion region on the surface of the white dwarf, the accreting geometry of the system as a whole and how polarimetry aides in the interpretation of X-ray/optical photometry and spectroscopy. I finish by describing the high speed spectro-polarimetric capabilities of SALT (Southern African Large Telescope) due for completion in 2005.  相似文献   

12.
Broad-band spectra of accreting X-ray binary pulsars can be fitted by a phenomenological model composed of a power law with a high energy rollover above 10 keV, plus a blackbody component with a temperature of few hundred eV. While, at least qualitatively, the hard tail can be explained in terms of (inverse) Compton scattering, the origin of the soft component cannot find a unique explanation. Recently, a qualitative picture able to explain the overall broad-band spectrum of luminous X-ray pulsars was carried out by taking into account the effect of bulk Comptonization in the accretion column. After a review of these recent theoretical developments, I will present a case study of how different modeling of the continuum affect broad features, in particular the cyclotron resonance features in Vela X-1.  相似文献   

13.
We have analysed 9 years of data from the All Sky Monitor on the Rossi X-ray Timing Explorer for 2S 0114+650 to study the evolution of its spin, binary, and super-orbital periods. The spin history of the neutron star in this system exhibits torque reversals lasting 1 year. The newly discovered super-orbital period has remained stable over the 9-year span, making 2S 0114+650 the fourth known system to exhibit stable super-orbital modulation. We compare its super-orbital period evolution with those of the other three such systems.  相似文献   

14.
Hard X-ray emitting symbiotic stars are candidates for SN Ia progenitors. The importance of Type Ia SNe as standard candles for cosmology makes the study of their progenitor systems particularly important. Additionally, they provide one of the most promising laboratories for the study of astrophysical jets. Typically, the X-ray emission in these systems is modeled with a collisional plasma model, sometimes with an emission measure distribution taken from a cooling flow model. The lack of any coherent periods in both X-rays and optical wave band strongly suggests that the accreting white dwarfs in the hard X-ray symbiotic stars are non-magnetic. Although relatively few have been discovered to date, but we believe that there are very many of them in our galaxy and could be possible candidates for the Galactic Ridge X-ray Emissions (GRXE).  相似文献   

15.
A small number of early Be stars exhibit X-ray luminosities intermediate between those typical of early type stars and those radiated by Be/X-ray binaries in the quiescent state. We report on XMM-Newton observations of two such Be stars, HD 161103 and SAO 49725 which were originally discovered in a systematic cross-correlation between the ROSAT all-sky survey and SIMBAD. The new observations confirm the X-ray luminosity detected by ROSAT (LX  1032 erg s−1) and the hardness of their X-ray spectra (thin thermal with kT  8–10 keV or power law with photon index of 1.7) which are both unusual for normal early type stars. We discuss the possible origin of this excess X-ray emission in the light of the models proposed for γ-Cas, magnetic disc-star interaction or accretion onto a compact companion object, neutron star or white dwarf, and compare the properties of these two sources with those of the new massive systems discovered in the XMM- Newton/SSC survey of the Galactic plane.  相似文献   

16.
The determination of fundamental parameters in X-ray luminous (persistent) X-ray binaries has been classically hampered by the large optical luminosity of the accretion disc. New methods, based on irradiation of the donor star and burst oscillations, provide the opportunity to derive dynamical information and mass constraints in many persistent systems for the first time. These techniques are here reviewed and the latest results presented.  相似文献   

17.
Unlike black hole candidate systems, accreting neutron stars seem to encounter appreciable difficulties in emitting strong hard X-ray fluxes. However, in the catalogue of the hard X-ray sources detected by SIGMA, three sources are associated with type I X-ray bursters. In this paper, we review the present status of the SIGMA observations of these three X-ray burst sources, namely X 1724-308 in the globular cluster Terzan II, KS 1731-260, and GX 354+0.  相似文献   

18.
The hard X-ray spectra of small subset of accreting pulsars show absorption-like line features in the range 10–100 keV. These lines, referred to as cyclotron lines or cyclotron resonance scattering features, are due to photons scattered out of the line of sight by electrons trapped in the 1012 G pulsar polar cap magnetic field. In this paper we present a review of observations, from the discovery of a cyclotron line in Hercules X-1 to recent results with RXTE and INTEGRAL.  相似文献   

19.
Some aspects of fluid instabilities occurring in the magnetospheres of accreting neutron stars are discussed. It is pointed out that (i) in the absence of strong differential rotation, the accreting plasma should be drawn out into spiralling, sheet-like structures, resulting in efficient mixing between the two media; (ii) the Rayleigh-Taylor instability also acts to limit the X-ray luminosity in super-critical sources; and (iii) magnetic shear has a strong stabilizing influence on Kelvin-Helmholtz modes, and its presence may allow substantial amounts of material to be supported around the magnetosphere.  相似文献   

20.
本文从刘维定理出发,通过相空间求平均,建立了中子星吸积柱中粒子流连续方程和动量迁移方程。并在静力学平衡下求出其解;建立了吸积柱中的荷电粒子分布;引出了某些有趣的新结果。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号