首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Long (>100 ks) observations of the bright Seyfert galaxies Mrk 766 and NGC 4051 have been obtained using XMM-Newton. The RGS 5–38 Å spectra reveal evidence of broad features. These can be modelled with relativistic emission lines coming from the immediate vicinity of a massive rotating black hole. Lines of OVIII, NVII and CVI are required to reproduce the spectrum of Mrk 766, whereas the spectrum of NGC 4051 can be modelled using a single, even broader OVIII line. Both Seyferts also exhibit broad iron line emission in the 2–8 keV range, and the data available thus far suggest that the strength of the low-energy emission lines and the strength of the iron line may be correlated.  相似文献   

2.
Energetic outflows appear to occur in conjunction with active mass accretion onto supermassive black holes. These outflows are most readily observed in the 10% of quasars with broad absorption lines, where the observer’s line of sight passes through the wind. Until fairly recently, the paucity of X-ray data from these objects was notable, but now sensitive hard-band missions such as Chandra and XMM-Newton are routinely detecting broad absorption line quasars. The X-ray regime offers qualitatively new information for the understanding of these objects, and these new results must be taken into account in theoretical modeling of quasar winds.  相似文献   

3.
Calculated intensities of the Fe X-ray lines due to transitions 2p6 − 2p53d lines (near 15 Å) and 2p6 − 2p53s lines (near 17 Å) are compared with measured line intensities in solar and tokamak spectra. For the solar spectra, temperature Te is obtained from the ratio of the Fe 16.776 Å line to a nearby Fe line. We find excellent agreement for all the major Fe line features in the 15–17 Å region except the Fe 15.015 Å line, the observed flux of which is less than the theoretical by a factor f. We find that f strongly depends on the heliocentric angle θ of the emitting region, being smallest (0.2) when the region is nearest Sun centre, but nearly 1 near the limb. Attributing this to resonance scattering, we are able to deduce the path length and electron density from the observations. Possible application to stellar active regions is given.  相似文献   

4.
We report on the luminosity dependent change of the cyclotron resonance energy obtained from a transient X-ray pulsar, 4U 0115+63. Using RXTE data observed on 1999 March, we found that the fundamental resonance energy stayed constant (11 keV) when the source luminosity was above 5 × 1037 erg s−1. As the luminosity decreased below 5 × 1037 erg s−1, the fundamental resonance energy gradually increased up to 16 keV at 0.16 × 1037 erg s−1. The luminosity dependence of the resonance energy can be understood by the change of the accretion column height.  相似文献   

5.
We present preliminary results from analyses of hard X-ray and optical observations of a soft X-ray selected sample. We created a small but complete sample with 20 of the softest and brightest objects with low Galactic absorption from the ROSAT bright soft X-ray selected radio-quiet AGN sample. This sample consists of 10 narrow-line Seyfert 1 galaxies and 10 broad-line Seyfert galaxies. We analyze ASCA data in the 0.6–10 keV band and optical spectra from ground-based telescopes. We investigate the photon indices in the hard X-ray band, soft excesses in the ASCA band, and optical emission line properties. The photon indices in the 2–10 keV band are nominal for both narrow-line Seyfert 1 galaxies and broad-line Seyfert 1 galaxies in each class compared with other heterogeneous samples. All of the narrow-line Seyfert 1 galaxies show soft excesses, but this component seems to be less significant for broad-line Seyfert 1 galaxies. There seems to be a trend of steeper X-ray spectra to be accompanied by narrower Hβ for narrow-line Seyfert 1 galaxies, but this is not extended to the larger velocity width regime of broad-line Seyfert 1 galaxies, and no clear trend is seen among them.  相似文献   

6.
We present the analysis of archival Chandra high resolution X-ray spectra of AM Her. Emission lines from several hydrogen-like ions, helium-like ions, Fe-L shell transitions and Fe-K fluorescent are identified. Using the resonance, intercombination and forbidden lines of the few prominent helium-like ions, we infer a density greater than 2 × 1012 cm−3 and a temperature of 2 MK for the oxygen and neon line emitting regions in the accretion column of AM Her.  相似文献   

7.
Emission heights of coronal bright points on Fe XII radiance map   总被引:1,自引:0,他引:1  
The study of coronal bright points (BPs) is important for understanding coronal heating and the origin of the solar wind. Previous studies indicated that coronal BPs have a highly significant tendency to coincide with magnetic neutral lines in the photosphere. Here we further studied the emission heights of the BPs above the photosphere in the bipolar magnetic loops that are apparently associated with them. As BPs are seen in projection against the disk their true emission heights are unknown. The correlation of the BP locations on the Fe XII radiance map from EIT with the magnetic field features (in particular neutral lines) was investigated in detail. The coronal magnetic field was determined by an extrapolation of the photospheric field (derived from 2-D magnetograms obtained from the Kitt Peak observatory) to different altitudes above the disk. It was found that most BPs sit on or near a photospheric neutral line, but that the emission occurs at a height of about 5 Mm. Some BPs, while being seen in projection, still seem to coincide with neutral lines, although their emission takes place at heights of more than 10 Mm. Such coincidences almost disappear for emissions above 20 Mm. We also projected the upper segments of the 3-D magnetic field lines above different heights, respectively, on to the tangent xy plane, where x is in the east–west and y in the south–north direction. The shape of each BP was compared with the respective field-line segment nearby. This comparison suggests that most coronal BPs are actually located on the top of their associated magnetic loops. Finally, we calculated for each selected BP region the correlation coefficient between the Fe XII intensity enhancement and the horizontal component of the extrapolated magnetic field vector at the same xy position in planes of different heights, respectively. We found that for almost all the BP regions we studied the correlation coefficient, with increasing height, increases to a maximal value and then decreases again. The height corresponding to this maximum was defined as the correlation height, which for most bright points was found to range below 20 Mm.  相似文献   

8.
Current literature suggests that several lines in the soft X-ray portion of the coronal spectrum may not be optically thin. Here, we confirm the results of Schmelz et al. (1996) who find no significant opacity effects for three of the brightest non-iron resonance lines in this part of the spectrum — O VIII at 18.97Å, Ne IX at 13.45Å, and Mg XI at 9.17Å. A comparison is made between each of these lines and an optically thin “reference” line produced by the same element in the same ionization state — O VIII at 15.18Å, Ne IX at 13.55Å, and Mg XI at 9.23Å. In the latter two cases, the comparison line is the intersystem line of the He-like triplet. 33 spectra from the Solar Maximum Mission Flat Crystal Spectrometer are analyzed, all of which were obtained from non-flaring, quasi-stable active regions.  相似文献   

9.
MXB 0656-072 is an accreting X-ray pulsar with a Be star companion, showing notable emission in H. In October 2003 this system exhibited a large and extended X-ray outburst. RXTE observations during this outburst indicated a pulse period of 160.4 s and a cyclotron resonance scattering feature in the spectrum at 32 keV. This paper presents pulse profile analysis and phase-resolved X-ray spectroscopy of RXTE observations during this outburst.  相似文献   

10.
We report the XMM-Newton detection of narrow Fe xxv and Fe xxvi X-ray absorption lines at 7 keV in the persistent emission of the dipping low-mass X-ray binary (LMXB) 4U 1323−62. Such features have now been reported in a growing number of LMXBs seen almost edge-on, indicating that the highly-ionized plasma probably originates in an accretion disk atmosphere or wind. During dipping intervals of 4U 1323−62, the strength of the Fe xxv feature increases while that of the Fe xxvi feature decreases, consistent with the presence of less strongly ionized material in the line-of-sight. As observed previously, the changes in the X-ray spectrum during dips are inconsistent with a simple increase in absorption by cool material. However, we show that the changes in both the narrow absorption features and the continuum can be modeled self-consistently by variations in the properties of an ionized absorber. From persistent to deep dipping the photo-ionization parameter decreases while the equivalent hydrogen column density of the ionized absorber increases. No partial covering of any component of the spectrum, and hence no extended corona, are required. Since highly-ionized absorption features are seen from many other dip sources, this mechanism may also explain the overall changes in X-ray spectrum observed during dipping intervals from these systems.  相似文献   

11.
Spectral measurements by the Solar Maximum Mission have been used to confirm the cyclotron lines in gamma-ray bursts reported from the Konus experiment. We present ISEE-3 data for the same burst (GB800419) during the same period of time which show no line. We discuss various problems in the analysis of scintillator spectra and point out that unfolded spectra are not necessarily unique and that the position of a data point in a deconvolved spectrum may vary depending on the assumed overall shape of the spectrum. As a result, if the analysis assumes a soft spectrum (such as optically thin thermal bremsstrahlung) an absorption feature might appear, whereas a harder spectrum (such as a Comptonized blackbody) would not require the feature. Since the continuum shape probably changes during the duration of a typical burst, the nonuniqueness of the spectral unfolding, combined with the assumption that the continuum is optically thin thermal bremsstrahlung, could give rise to spurious “absorption” features which vary on a time scale of seconds. Despite these problems, there is still some evidence for narrow spectral lines in the range 45 to 65 keV but not for the broad lines reported from the Konus experiment. Unfortunately, the range 45 to 65 keV is the most difficult spectral region to unfold.  相似文献   

12.
We present a forward modelling technique for calculating the surface X-ray spectra for a variety of lunar terrains. Our calculations considered variations in solar fluxes from solar quiescent condition to large flare activity (M1 flare), and expected elemental concentrations in the target, as well as yield, instrumental, and viewing geometry parameters for X-ray induced fluorescence from the lunar surface. Additionally, we present estimates of anticipated XRF signals from prominent Kα lines observable by a collimated 14 cm2 X-ray detector from a 100 km lunar orbit with ∼20 km spatial resolution. Our results show that Mg, Al and Si characteristic Kα lines can be observed for all solar conditions. The Ca Kα lines line can be differentiated from a fixed background during more energetic solar conditions such as C1 and M1 flares, whereas Ti and Fe lines are identifiable only during C1 and M1 solar flare conditions for Apollo 12 site composition. Both the Kα X-ray intensity ratios of Mg/Si and Al/Si correlate well with concentration ratios of Mg/Si and Al/Si, respectively, for B1 and M1 solar conditions. The Kα X-ray intensity ratios of Fe/Si and Ca/Si correlates with concentration ratios of Fe/Si and Ca/Si, respectively, for M1 solar condition. In principle, the modelling technique outlined here can be used to determine absolute elemental abundances (Mg, Al, Si, Ca, Ti and Fe) from X-ray spectra measured during recent and future lunar missions.  相似文献   

13.
We present six ROSAT PSPC observations of Seyfert 1 galaxies chosen to have low Galactic line-of-sight absorption (NH 1020 cm−2). As expected, it is found that all of these sources possess significantly steeper spectra below 1 keV, than that observed at higher X-ray energies. In addition we find evidence for soft X-ray spectral features, which are best parameterized as line emission at 0.63 keV in NGC7469 and 0.75 keV in ESO198-G24. We examine these results in the light of the accuracy of the PSPC spectral calibration.  相似文献   

14.
X-ray telescopes have been providing high sensitivity X-ray observations in numerous missions. For X-ray telescopes in the future, one of the key technologies is to expand the energy band beyond 10 keV. We designed depth-graded multilayer, so-called supermirrors, for a hard X-ray telescope in the energy band up to 40 keV using lightweight thin-foil optics. They were successfully flown in a balloon flight and obtained a hard X-ray image of Cyg X-1 in the 20–40 keV band. Now supermirrors are promising to realize a hard X-ray telescope. We have estimated the performance of a hard X-ray telescope using a platinum–carbon supermirror for future satellite missions, such as NeXT (Japan) and XEUS (Europe). According to calculations, they will have a significant effective area up to 80 keV, and their effective areas will be more than 280 cm2 even at 60 keV. Limiting sensitivity will be down to 1.7 × 10−13 erg cm−2 s−1 in the 10–80 keV band at a 100 ks observation. In this paper, we present the results of the balloon experiment with the first supermirror flown and projected effective areas of hard X-ray telescopes and action items for future missions.  相似文献   

15.
The experiment on investigation of effect of the HF emission (300 W) by the dipole antenna on the ionospheric plasma was carried out onboard the COSMOS-1809 satellite (1987). The sounder accelerated particles (SAP) at the electron cyclotron harmonics n · ωcs and in the frequency region of antenna resonance were detected by the charged particle spectrometer.  相似文献   

16.
We investigate the dark matter distributions in the central region of two clusters of galaxies (A1835 and MKW3S) using Chandra data. N-body simulations in the standard cold dark matter (CDM) model predict the dark matter distribution shows a cuspy dark matter profile: ρ(r) ∝ r, with in the range 1–2, while observations of dwarf and low surface brightness galaxies seem to favor the presence of a relatively flat core: 0 <  < 1. To investigate the dark matter distributions in the central region of clusters of galaxies, we analyze the Chandra data of A1835 and MKW3S with a deprojection method. We derive the mass profiles without the assumption of analytical models. We examine the inner slope of derived mass profiles assuming the dark matter profile is described with a power-law expression. The values of the slope are 0.95 ± 0.10 for A1835 and 1.33 ± 0.12 for MKW3S within the radius of 200 kpc. These are consistent with the result of the CDM simulations. However, within the radius of 100 kpc, the value of is less than unity for A1835 (0.47 ± 0.31). Our result implies that the central dark matter profile of some clusters cannot be described by CDM halos.  相似文献   

17.
We describe the “Monitor e Imageador de Raios-X” (MIRAX), an X-ray astronomy satellite mission proposed by the high-energy astrophysics group at the National Institute for Space Research (INPE) in Brazil to the Brazilian Space Agency. MIRAX is an international collaboration that includes, besides INPE, the University of California San Diego, the University of Tübingen in Germany, the Massachusetts Institute of Technology and the Space Research Organization Netherlands. The payload of MIRAX will consist of two identical hard X-ray cameras (10–200 keV) and one soft X-ray camera (2–28 keV), both with angular resolution of 5–7. The basic objective of MIRAX is to carry out continuous broadband imaging spectroscopy observations of a large source sample (9 months/yr) in the central Galactic plane region. This will allow the detection, localization, possible identification, and spectral/temporal study of the entire history of transient phenomena to be carried out in one single mission. MIRAX will have sensitivities of 5 mCrab/day in the 2–10 keV band (2 times better than the All Sky Monitor on Rossi X-ray Timing Explorer) and 2.6 mCrab/day in the 10–100 keV band (40 times better than the Earth Occultation technique of the Burst and Transient Source Experiment on the Compton Gamma-Ray Observatory). The MIRAX spacecraft will weigh about 200 kg and is expected to be launched in a low-altitude (600 km) circular equatorial orbit around 2007/2008.  相似文献   

18.
Millisecond X-ray time variability studies of accreting low-magnetic-field neutron stars and stellar-mass black holes in X-ray binaries probe the motion of matter in regions of strong gravity. In these regions, general relativity (GR) is no longer a small correction to the classical laws of motion, but instead dominates the dynamics: we are studying motion in strongly curved spacetime. Such millisecond X-ray variability studies can therefore provide unique tests of GR in the strong-field regime. The same studies also constrain neutron-star parameters such as stellar mass and radius, and thereby the equation of state (EOS) of ultradense matter. I briefly review the status, and discuss the prospects for mapping out space-time near accreting stellar-mass compact objects, and measuring the EOS of dense matter, through millisecond timing, particularly with an eye towards future missions. The overwhelming consideration for timing sensitivity is collecting area: contrary to most applications, the signal-to-noise ratio for the aperiodic timing phenomena produced by accretion flows increases proportionally with count rate rather than as the square root of it. A 10 times larger instrument turns 1σ effects into 10σ effects (or does as well in 1% of the time). With the Rossi X-ray Timing Explorer (RXTE), using 0.6 m2 collecting area, we have found several timing diagnostics from the accretion flow in the strong field region around neutron stars and black holes, as well as signals from neutron star surface hot spots. Combined work between RXTE and the new sensitive X-ray spectrographs onboard Chandra and XMM can already begin to clinch the geometry and physical mechanisms underlying these signals. Future instruments, larger in area by an order of magnitude and in some cases with enhanced spectral capabilities, are expected to turn these diagnostics of GR into true tests of GR. They are also expected to put strong constraints on neutron-star structure, and thereby on the EOS of supranuclear density matter.  相似文献   

19.
We present the observations of He-like Ar triplet lines obtained by RESIK spectrometer aboard CORONAS-F. Interpretation of intensity ratios between triplet lines of lower Z elements is known to provide useful diagnostics of plasma conditions within the emitting source. Here, we investigate whether triplet line ratios are useful for interpretation of higher Z element spectra. A high sensitivity, low background and precise absolute calibration of RESIK allow to consider in addition also the continuum contribution. This provides a way to determine the Ar absolute abundance from the observed triplet component ratios. The method is presented and the results are shown for two selected flares. Derived values of Ar absolute abundance for these flares are found to be similar: 2.6 × 10−6 and 2.9 × 10−6. They fall in the range between presently accepted Ar photospheric and coronal abundances.  相似文献   

20.
High-resolution Chandra observations have allowed the detection of populations of X-ray sources in galaxies of all morphological types. The X-ray Luminosity Functions (XLFs) of these X-ray source populations have been derived and studied to uncover the drivers for the formation and evolution of binaries in different stellar populations and environments. These XLFs also provide a tool for identifying the nature of the X-ray source population, since different XLFs characterize X-ray sources belonging to young and old stellar populations. Similarly, X-ray colors can be used for identifying different types of X-ray sources. Ultra-Luminous X-ray sources (ULXs, LX > 1039 ergs s−1) are found to be associated with star-forming stellar populations. The study of the ULX population of the Antennae galaxies points to compact accreting binaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号