首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
At Uranus, the Voyager 2 plasma wave investigation observed very significant phenomena related to radio emissions, dust impacts and magnetospheric wave-particle interactions. On January 19, 1986 (R= 270RU) the plasma wave investigation detected an intense radio burst at 31 and 56 kHz, and this provided the first indication that Uranus had a magnetosphere. During the encounter we observed more of these sporadic bursts, along with relatively continuous radio emissions extending down to 10 kHz, and a sporadic narrowband radio signal with f near 5 kHz. As Voyager passed through the ring plane, the plasma wave investigation recorded a large number of dust impacts. The dust ring was relatively diffuse (thickness of several thousand kilometers) and the peak impact rate was near 50 hits/second. The Voyager 2 plasma wave instrument also detected many strong electromagnetic and electrostatic plasma waves, with intensity peaks in the region within 12 Uranus adii. These waves have characteristics that can interact strongly with the local plasma and with the trapped energetic particles, leading to precipitation into the atmosphere, charged particle acceleration, and charged particle diffusion. In addition we detected strong wave activity in the region of the bow shock and moderate levels in the magnetic tail.  相似文献   

2.
Jupiter and Saturn are two of the more “exotic” planets in our solar system. The former possesses its own system with 15 satellites in orbit about the parent planet. Saturn has a uniquely well developed and distinctive ring system of particulate matter and also at least 11 satellites, including the largest one amongst all the planets, Titan, with a radius of 2900 km ± 100 km. In the decade of the 70's, the USA launched 4 unmanned spacecraft to probe these giant planets in-situ with a suite of highly advanced instrumentation. Four separate encounters have occurred at Jupiter: 1. Pioneer 10 in December 1973 2. Pioner 11 in December 1974 3. Voyager 1 in March 1979 4. Voyager 2 in July 1979 The characteristics of these trajectories is shown in Table I. Thus far, only a single encounter of Saturn has occurred, that by Pioneer 11 in September 1979. Future encounters of Saturn by Voyager spacecraft will occur in mid-November 1980 and late-August 1981. It is the purpose of this talk to summarize what is presently known about the magnetic fields of these planets and the characteristics of their magnetospheres, which are formed by interaction with the solar wind.  相似文献   

3.
Two small satellites of Mars, Phobos and Deimos, can be dust sources around Mars. Orbits of circummartian dust particles are controlled by solar radiation pressure as well as Martian oblateness. Their orbital eccentricity and inclination can be enhanced greatly by the orbital resonance. Particles from Phobos would form a thin dust ring where dust radius is dominant in 20–200μm. On the other hand, particles from Deimos would form an extended dust torus. Collisions of ring particles on Phobos and Deimos may be the most important dust source. The upper limit of dust production from this self-sustaining mechanism can be estimated from the erosion rate of Phobos. Japanese Mars mission NOZOMI (PLANET-B) could discover dust ring/torus through direct detection by MDC (Mars Dust Counter).  相似文献   

4.
Dust rings have been observed around each of the giant planets and may also exist around Mars. The particles comprising these rings have short lifetimes due to a number of processes including exospheric and plasma drag, Poynting-Robertson drag, sputtering, collision with other circumplanetary particles, and the Lorentz force for charged grains. The supply of dust is maintained by collisions between macroscopic ring particles and bombardment of moons and ring particles by interplanetary impactors. All of the processes that act to remove or alter the circumplanetary dust grains are functions of particle size, so the initial size distribution of the grains released from an impact onto a moon or ring particle is modified. The size distribution of the impact ejecta can be described by a power-law of the form n(r)drrqdr where n(r)dr is the number of particles in the size range [r,r + dr] and q is the power-law index. For hypervelocity impact excavation, q ≈ 3.5. Drag acts more efficiently on smaller grains resulting in a reduction in q of 1. Other dynamical processes can lead to particle-size dependent collision rates with other circumplanetary objects. These processes can lead to local steepening of the size distribution (increase in q) and to truncation of the dust size distribution to a narrow range of sizes.  相似文献   

5.
Since 1963 approximately 300 satellites have been launched into the geostationary orbit, followed possibly by another additional 200 satellites up to the year 2000. Ground surveillance with radar and optical sensors able to detect objects of 1 m minimum size in the geostationary ring indicates a total population of several hundred which includes active and defunct satellites and spent upper stages. In addition, a population of untrackable objects is conjectured, whose size can only be estimated, possibly several thousand of smaller objects.

The purpose of this paper is to review the long-term evolution of orbits in the geostationary ring and at higher altitude, the collision probabilities and disposition options.

The major perturbations are considered including attitude-orbit cross-coupling effects which could cause secular orbit perturbations.

Collision probabilities for current and projected populations are reviewed considering different approaches, such as a deterministic treatment of the uncontrolled population and a stochastic modeling for the controlled satellites. Also, colocation, that is sharing of the same longitude slot by several operational satellites, is a potential source for collision, if no preventive measures are taken.

As regards spacecraft disposition options, the conclusion is that reorbiting is currently the only practical measure to safeguard the geostationary orbit. In this recommended procedure the defunct satellites are inserted into a so-called graveyard orbit, located suffieciently high above the geostationary orbit.  相似文献   


6.
It has been justifiably questioned if the black hole candidates (BHCs) have “hard surface” why Type I X-ray bursts are not seen from them [Narayan, R., Black holes in astrophysics, New J. Phys, 7, 199–218, 2005]. It is pointed out that a “physical surface” need not always be “hard” and could be “gaseous” in case the compact object is sufficiently hot [Mitra, A., The day of the reckoning: the value of the integration constant in the vacuum Schwarzschild solution, physics/0504076, p1–p6, 2005; Mitra, A., BHs or ECOs: A review of 90 years of misconceptions, in: Focus on Black Holes Research, Nova Science Pub., NY, p1–p94, 2005]. Even if a “hard surface” would be there, presence of strong intrinsic magnetic field could inhibit Type I X-ray burst from a compact object as is the case for Her X-1. Thus, non-occurrence of Type I bursts actually rules out those alternatives of BHs which are either non-magnetized or cold and, hence, is no evidence for existence of Event Horizons (EHs). On the other hand, from the first principle, we again show that the BHCs being uncharged and having finite masses cannot be BHs, because uncharged BHs have a unique mass M = 0. Thus the previous results that the so-called BHCs are actually extremely hot, ultramagnetized, Magnetospheric Eternally Collapsing Objects (ECOs) [Robertson, S., Leiter, D., Evidence for intrinsic magnetic moment in black hole candidates, Astrophys. J., 565, 447–451, (astro-ph/0102381), 2002 ; Robertson, S., Leiter, D., MECO model of galactic black hole candidates and active galactic nuclei, in: New Developments in Black Hole Research, Nova Science Pub., NY, p1–p44, astro-ph/0602453, 2005] rather than anything else get reconfirmed by non-occurrence of Type I X-ray bursts in BHCs.  相似文献   

7.
While interplanetary dust constitutes a primary source of cosmic particulate matter in planetary magnetospheres, the debris produced by its impact with small satellites and ring material provides an important secondary source. Internal processes, such as volcanic activity, particularly in the smaller satellites, could result in a third source. In the case of the terrestrial magnetosphere there are also artificial (internal) sources: 1–10μ sized A?2O3 particles injected by solid rocket mortar burns between near earth and geosynchronous orbit constitute one such source, while the fragments of larger bodies (artificial satellites) due to explosions (e.g., “killer satellites”) and collisions constitute another. Finally, if we include the purely induced cometary magnetosphere among planetary magnetospheres, the injection of cometary dust into it due to entrainment by the outflowing gases constitutes another source.As a result of being immersed in a radiative and plasma environment these dust grains get electrically charged up to some potential (positive or negative). Particularly in those regions where the magnetospheric plasma is hot and dense and their own spatial density is low, the dust grains could get charged to numerically large negative potentials.While this charging may have physical consequences for the larger grains, such as electrostatic erosion (“chipping”) and disruption, it also can effect the dynamics of the smaller grains. Indeed, the small but finite capacitance of these grains, which leads to a phase lag in the gyrophase oscillation of the grain potential, could even lead to the permanent magneto-gravitational capture of interplanetary grains within planetary magnetospheres in certain situations. Here we will review the sources of dust in planetary magnetospheres and discuss their physics and their dynamics under the combined action of both planetary gravitational and magnetospheric electromagnetic forces.  相似文献   

8.
近地轨道的双星编队通常设计具有自稳定性的编队构型参数初值,通过保持编队构型参数形成长期稳定的相对周期运动。针对编队中卫星数量增多产生的相对运动耦合问题,提出了基于Hill坐标和三角函数公式的多星相对运动分析方法。基于SAR载荷测量基线定义,结合多星编队构型参数的相对运动特性,提出了编队构型参数的设计方法,能够实现多星编队的最大有效基线组合。通过分析J2项摄动和大气阻力摄动的长期影响,研究了异构多星编队的相对运动衍化规律,提出了主从形式的脉冲偏置控制,能够有效保持针对异构多星编队设计的编队构型。通过面质比异构的四星编队控制仿真,验证了脉冲偏置控制形式下异构多星编队构型保持控制方法的有效性。  相似文献   

9.
The Voyager 1 and 2 observations of the fine structure of the Saturnian ring system demonstrate the importance of electric forces in controlling the dynamics of fine (charged) dust in the rings. A new theory (“gravito-electrodynamics”) which combines the electric and the gravitational forces on these grains leads to natural explanations of a number of observed ring phenomena. If plasma processes play a significant role in the dynamics of the ring system at the present time, it is difficult to avoid the conclusion that they also played an important and perhaps crucial role at cosmogonic times during the emplacement and subsequent condensation of the initial dusty plasma. We believe that the Saturnian ring system represents a “time-capsule” containing vital clues about the physical processes operating during the early stages of its formation. We will show that both its overall structure as well as its fine structure, as determined by Voyagers 1 and 2, indicate the crucial importance of plasma processes in its formation and subsequent evolution.  相似文献   

10.
A/D转换信噪比分析及在小卫星终端中的应用   总被引:1,自引:0,他引:1  
针对一种宽带高中频接收方案,详细分析了地面反弹等因素对ADC信噪比的影响,给出了相应结果.最后从应用出发,根据小卫星接收终端对数据采集的要求,对所需的采样率等指标进行了分析和计算.  相似文献   

11.
主带三小行星系统216 Kleopatra是由主星216 Kleopatra及两个小月亮(moonlet)Alexhelios[S/2008(216)1]和Cleoselene[S/2008(216)2]组成。其中主星216Kleopatra是一个具有强不规则形状如哑铃的连接双星,大小为217km×94km×81km,外小月亮Alexhelios大小约为8.9km,内小月亮大小约为6.9km。其动力学行为具有非常丰富的科学内涵。研究了三小行星系统216Kleopatra自身的动力学机制及其引力场中探测器的运动规律,分析了主星质心固连系中探测器的动力学方程,给出了三小行星引力全多体问题的动力学方程及Jacobi积分,方程考虑了三个小行星的不规则外形、轨道与姿态。发现三小行星系统216Kleopatra主星引力场中一种新的周期轨道族的倍周期分岔。考虑主星的不规则精确外形与引力、两个小月亮的相互作用,研究了该三小行星系统的动力学构形。发现Kleopatra的强不规则几何外形及两个小月亮Alexhelios和Cleoselene的相互作用引起两个小月亮的轨道参数的显著变化。  相似文献   

12.
编队飞行卫星群相对轨道摄动运动分析   总被引:1,自引:0,他引:1  
编队飞行卫星群在运行过程中将受到各种摄动因素的影响,相对运动队形可能受到破坏而影响飞行任务的完成。针对中、低轨道编队飞行任务,分析了各种摄动因素对编队卫星相对队形的影响;导出了编队飞行卫星群相对队形的稳定条件;最后,结合稳定条件对典型编队队形进行了分析。  相似文献   

13.
The data from the synchronous-orbit satellites of the Gorizont series are used to study the dependences of the ion flux variation amplitudes in the synchronous altitude region (the diurnal behaviour) on particle energies and on the form and rigidity of the particle energy spectrum. The proton fluxes were measured in the energy range E 60–120 keV, and the [N,0]2+ and [C,N,0]4+ ion fluxes in the energy range E 60–70 keV/e.

The ratio of the diurnal variation amplitudes of the studied ions is shown to correspond to the similarity of their energy spectra in the E/Q representation. The magnetically-quiet time gradient of the distribution function F(μ,J,L) in the synchronous-orbit region is shown to be (∂F/∂L)=0 for the H+ and [N,0]2+ ions and (∂F/∂L) > 0 for the [C,N,0]4+ ions (at the values of μ corresponding to the examined energy ranges). During magnetically-disturbed periods the inner boundary of the (∂F/∂L)=0 region shifts to lower L and (∂ F/∂L) = O in the synchronous altitude region must be also for the [C,N,O]4+ ions.  相似文献   


14.
It is estimated that more than 22,300 human-made objects are in orbit around the Earth, with a total mass above 8,400,000 kg. Around 89% of these objects are non-operational and without control, which makes them to be considered orbital debris. These numbers consider only objects with dimensions larger than 10 cm. Besides those numbers, there are also about 2000 operational satellites in orbit nowadays. The space debris represents a hazard to operational satellites and to the space operations. A major concern is that this number is growing, due to new launches and particles generated by collisions. Another important point is that the development of CubeSats has increased exponentially in the last years, increasing the number of objects in space, mainly in the Low Earth Orbits (LEO). Due to the short operational time, CubeSats boost the debris population. One of the requirements for space debris mitigation in LEO is the limitation of the orbital lifetime of the satellites, which needs to be lower than 25 years. However, there are space debris with longer estimated decay time. In LEÓs, the influence of the atmospheric drag is the main orbital perturbation, and is used in maneuvers to increment the losses in the satellite orbital energy, to locate satellites in constellations and to accelerate the decay.The goal of the present research is to study the influence of aerodynamic rotational maneuver in the CubeSat?s orbital lifetime. The rotational axis is orthogonal to the orbital plane of the CubeSat, which generates variations in the ballistic coefficient along the trajectory. The maneuver is proposed to accelerate the decay and to mitigate orbital debris generated by non-operational CubeSats. The panel method is selected to determine the drag coefficient as a function of the flow incident angle and the spinning rate. The pressure distribution is integrated from the satellite faces at hypersonic rarefied flow to calculate the drag coefficient. The mathematical model considers the gravitational potential of the Earth and the deceleration due to drag. To analyze the effects of the rotation during the decay, multiple trajectories were propagated, comparing the results obtained assuming a constant drag coefficient with trajectories where the drag coefficient changes periodically. The initial perigees selected were lower than 400 km of altitude with eccentricities ranging from 0.00 to 0.02. Six values for the angular velocity were applied in the maneuver. The technique of rotating the spacecraft is an interesting solution to increase the orbit decay of a CubeSat without implementing additional de-orbit devices. Significant changes in the decay time are presented due to the increase of the mean drag coefficient calculated by the panel method, when the maneuver is applied, reducing the orbital lifetime, however the results are independent of the angular velocity of the satellite.  相似文献   

15.
Conditions appropriate to gas-surface interactions on satellite surfaces in orbit have not been successfully duplicated in the laboratory. However, measurements by pressure gauges and mass spectrometers in orbit have revealed enough of the basic physical chemistry that realistic theoretical models of the gas-surface interaction can now be used to calculate physical drag coefficients. The dependence of these drag coefficients on conditions in space can be inferred by comparing the physical drag coefficient of a satellite with a drag coefficient fitted to its observed orbital decay. This study takes advantage of recent data on spheres and attitude stabilized satellites to compare physical drag coefficients with the histories of the orbital decay of several satellites during the recent sunspot maximum. The orbital decay was obtained by fitting, in a least squares sense, the semi-major axis decay inferred from the historical two-line elements acquired by the US Space Surveillance Network. All the principal orbital perturbations were included, namely geopotential harmonics up to the 16th degree and order, third body attraction of the Moon and the Sun, direct solar radiation pressure (with eclipses), and aerodynamic drag, using the Jacchia-Bowman 2006 (JB2006) model to describe the atmospheric density. After adjusting for density model bias, a comparison of the fitted drag coefficient with the physical drag coefficient has yielded values for the energy accommodation coefficient as well as for the physical drag coefficient as a function of altitude during solar maximum conditions. The results are consistent with the altitude and solar cycle variation of atomic oxygen, which is known to be adsorbed on satellite surfaces, affecting both the energy accommodation and angular distribution of the reemitted molecules.  相似文献   

16.
Principal aspects of the effect of aerosols on climate are discussed and the possibilities of obtaining a climatic data set of global aerosols are analyzed. Based on the analysis of space images, new data have been obtained on gigantic dust outbreaks in various regions of the Earth. It has been shown that dust outbreaks can propagate over hundreds and sometimes thousands of kilometers. The western Sahara - Atlantic Ocean is the major region of propagation of these outbreaks. The continent-to-continent trajectories of dust clouds have been discovered (from Africa to the coast of America, from Central Asia to the Pacific Ocean). Maps of the sources of strong dust transformations have been studied and drawn. In particular, an anthropogenic dust source has been found out on the northeastern coast of the Aral Sea. A striped mesostructure of dust formations has been analyzed, determined by both the inhomogeneous surface and peculiarities of the eddy dust transport. The techniques have been discussed in detail for retrieving the parameters of aerosol size distribution and the vertical profiles of the coefficients of aerosol extinction in the stratosphere and lower mesosphere from the data on the brightness of the twilight and daytime horizon as well as occultation measurements of solar radiation attenuation by the atmosphere.The difficulty of reliably predicting possible environmental changes arises both from the problems of estimating complex interactions of numerous processes and from a lack of information concerning various environmental parameters. For example, an important factor in present day climatic changes is the increased dust content of the atmosphere due to man's activities. However, a reliable estimate of this influence is found to be impossible due to the absence of definitive data on the global distribution of atmospheric dust and the properties of dust in various parts of the world [4,5,13–15]. The impact of aerosols on climate has been discussed in detail in a number of monographs [12–15].Observations from space have opened up new possibilities for studying atmospheric dust. For this purpose, both the imagery and spectrometry of the Earth's atmosphere from space are used. Rather attractive are the prospects for laser sounding [1].  相似文献   

17.
无拖曳技术能够有效地抵消卫星的非保守力,适用于未来的空间探测任务.这种技术的实现对推力器提出很高的要求.在广泛调研的基础上,归纳无拖曳卫星中微推力器的工作原理及特点,并介绍其应用情况.根据中国无拖曳技术的发展要求,针对无拖曳冷气微推力器中比例阀的流量控制过程,建立其动态模型进行仿真,并在此基础上设计模糊自适应PID控制器,改善了系统的动态性能.  相似文献   

18.
A study on reconfiguration manoevres applied to a tetrahedral formation in highly elliptical orbits is proposed, by using a propellantless solution. The manoeuvring strategy consists in exploiting certain environmental forces, specifically those provided by solar radiation pressure and atmospheric drag, by actively controlling the satellites’ attitudes. Through inverse dynamics particle swarm optimization the optimal attitudes required for the manoeuvres are evaluated, whereas the configuration’s evolution is simulated by a high-fidelity orbital simulator. The goal of the reconfiguration problem is to find an optimal control in order for the four spacecraft to reach a desired configuration in a specified portion of orbit, where the desired configuration is evaluated by a shape and size geometric parameter. By increasing the manoeuvring time and the satellites’ area to mass ratio, all the case studies considered are successfully verified.  相似文献   

19.
One of the advantages that drive nanosatellite development is the potential of multi-point observation through constellation operation. However, constellation deployment of nanosatellites has been a challenge, as thruster operations for orbit maneuver were limited due to mass, volume, and power. Recently, a de-orbiting mechanism using magnetic torquer interaction with space plasma has been introduced, so-called plasma drag. As no additional hardware nor propellant is required, plasma drag has the potential in being used as constellation deployment method. In this research, a novel constellation deployment method using plasma drag is proposed. Orbit decay rate of the satellites in a constellation is controlled using plasma drag in order to achieve a desired phase angle and phase angle rate. A simplified 1D problem is formulated for an elementary analysis of the constellation deployment time. Numerical simulations are further performed for analytical analysis assessment and sensitivity analysis. Analytical analysis and numerical simulation results both agree that the constellation deployment time is proportional to the inverse square root of magnetic moment, the square root of desired phase angle and the square root of satellite mass. CubeSats ranging from 1 to 3?U (1–3?kg nanosatellites) are examined in order to investigate the feasibility of plasma drag constellation on nanosatellite systems. The feasibility analysis results show that plasma drag constellation is feasible on CubeSats, which open up the possibility of CubeSat constellation missions.  相似文献   

20.
Nanosatellites in the swarm initially move along arbitrary unbounded relative trajectories according to the launch initial conditions. Control algorithms developed in the paper are aimed to achieve the required spatial distribution of satellites in the along-track direction. The paper considers a swarm of 3U CubeSats in LEO, their form-factor is suitable for the aerodynamic control since the ratio of the satellite maximum to minimum cross-section areas is 3. Each satellite is provided with the information about the relative motion of neighboring satellites inside a specified communication area. The paper develops the corresponding decentralized control algorithms using the differential drag force. The required attitude control for each satellite is implemented by the active magnetic attitude control system. A set of decentralized control strategies is proposed taking into account the communicational constraints. The performance of these strategies is studied numerically. The swarm separation effect is demonstrated and investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号