首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
介绍了一种基于电阻法的工艺液位传感器测量系统的设计与实现,该传感器测量系统包括利用液位传感器、点式液位传感器、耗尽关机液位传感器与剩余液位传感器及对应的变送器。设计了相应的半自动校准系统对传感器的精度进行标定,分析了测量结果的不确定度。经过测试,所有传感器各项指标均满足设计要求。该传感器的研制解决了现有容积计量及液压试验系统不能对贮箱各不同部位进行容积和高度监测的问题。  相似文献   

2.
介绍了一种连杆装置载荷测试系统。某大型火箭芯级与助推器的连接采用了三支点超静定捆绑方式,为了充分了解这一新型捆绑连接结构在火箭大型地面试验和发射前加注过程中的载荷变化情况,开发设计了捆绑连杆载荷监测系统。系统采用了多路模拟开关及扫描技术实现了多通道数据实时采集,同时编制数据采集和数据处理软件对采集到的电压信号进行分析处理。通过对该系统的标定,实现载荷的测量。文章介绍了系统的硬件、软件设计原理和系统的两种工作状态。通过对箭上使用的连杆进行标定,得到连杆受力和系统输出的关系,通过标准载荷试验验证,线性误差在系统允许范围内。该系统载荷测量准确,可以用于火箭各种大型地面试验中捆绑连杆的载荷测量。  相似文献   

3.
针对大型卫星在总体装配生产过程中需要对其密封性能、仪器的安装精度、质量特性性能指标进行准确测试的要求,研制了单点、总漏率四极质谱和氦质谱测试系统及相应的标定装置,实现了大型卫星电推进系统密封性能的准确测试和实时比对校准;研制了基于三坐标转换机的大载荷质心、转动惯量集成质量特性测试系统和直接比对校准转子,单次安装测出所有轴向的质量特性参数;研制经纬仪、激光跟踪仪联合高精度角度和位置安装精度测量系统,研制基准转换器,实现测量坐标系的转化和测量精度的实时校准。完成了数个大型卫星总装过程的专业测试工作,保证了大型卫星的总装过程装配质量。  相似文献   

4.
本文介绍了一种非真空采样的危险气体浓度标定系统,该系统可同时对1—5只探头进行浓度的绝对标定。该系统操作简单、精确度高,便于探头清洁处理,刻度范围可以从10~5PP~M—1PP~M,通过对N_2的实验,精度可达3%。该系统为敏感探头的定期校准提供了切实可行的手段。本文仅从原理上给出论述。  相似文献   

5.
传统的标准太阳电池标定方法分为高空标定与地面标定,地面标定方法已纳入国际标准。地面标定由于操作简便、标定结果较为精准目前被广泛应用。太阳电池标定结果准确与否对航天器电源系统姿态敏感期、地面环境模拟的设计具有重要意义。本文对太阳电池地面标定方法展开研究,根据国家标准中地面标定方法原理研制了便携式、高准确度的地面标定测试设备,包括准直孔、太阳电池托盘、太阳跟踪器等标定装置,使地面标定过程简易化,对航天用太阳电池地面标定有着重要意义。  相似文献   

6.
建立了用于液位测量的CCD摄像测量系统。在散射照明的条件下,液位图像成像到高分辨力的电荷耦合器件上,然后通过对传感器信号进行分析和处理,可以精确地计算出液位的高低。利用CCD摄像法实现液位精确测量,处理电路采用C8051F060单片机为核心器件对传感器输出信号进行处理,通过单片机串口将采集的数据传输给计算机。系统具有非接触、实时性、高准确度以及自动化的特点。  相似文献   

7.
基于三维激光扫描系统的移动机器人动态环境地图构建技术是机器人智能感知技术的重要组成部分,而三维激光扫描系统的设计及标定技术对于地图构建的精度有决定性的影响。针对应用于小型移动机器人的三维激光扫描系统低成本、小型化的需求,设计了一套由高精度旋转云台和小型二维激光测距传感器组成的三维激光扫描系统,并提出了一种新的系统参数标定方法以提高三维扫描测量的准确度。该方法使用镂空圆孔标定板作为标定对象以完成对三维扫描特征自动准确获取,并根据非线性最小二乘法对三维激光扫描系统的参数进行优化计算。实验结果表明,所设计的三维激光扫描系统能够准确地测量周围环境的三维信息,实现了以低成本获得高质量环境建模的三维扫描数据技术。   相似文献   

8.
推力是反映姿态控制发动机性能参数的关键指标,对推力测试系统的精确标定是准确测量推力矢量的前提,同时,提升标定系统的自动化程度是亟需解决的问题。重点介绍了一种应用电磁悬浮技术的姿态控制发动机推力测试平台,并设计了针对推力测量传感器的电磁自动加载标定系统。仿真与试验结果表明,该系统能实现满足精度需求的多回程自动标定,有效提升系统的自动化程度以及标定效率和准确度。  相似文献   

9.
介绍了综合测试系统用于检测全自动洗衣机用液位开关及模糊洗衣机用液位传感器,用一台检测仪器代替原有的两套检测设备,可以满足用户生产线上对传感器质量全检的要求,且准确度高、操作简便、性能可靠。  相似文献   

10.
推进剂利用系统连续液位测量滤波算法研究   总被引:1,自引:0,他引:1  
针对我国低温推进剂利用系统中连续液位测量中的错节问题,提出了一种基于流量的液位测量滤波算法。介绍了该算法的基本原理,对算法进行了数学建模与数字仿真。通过对仿真结果的分析证实了该算法可以有效解决火箭飞行过程中由于液位晃动造成的测量误差问题,具有一定的工程应用价值。  相似文献   

11.
设备时延是卫星双向时间频率传递过程中的主要误差源,对其进行校准是获得高精度时间比对的关键。从卫星双向时间频率传递的基本原理出发,分析了基于移动参考站的卫星双向时间频率传递链路设备时延校准的方法。工程实践中,限于条件对校准方法进行了调整,实现了对两站卫星双向时间比对链路设备时延的校准。  相似文献   

12.
风洞实验中经常遇到利用多台仪器测量同一物理量的问题,而各子系统之间的一致性是影响测试准确度的重要因素。就子系统之间的误差对测压实验结果的影响进行了分析并介绍了统校方法。结果表明:子系统本身不确定度比较高,一般不低于0.1%,而多个子系统的分散度相对比较差。因此,利用多套子系统同时测量某一物理量时,有必要进行系统统校;经过统校并作适当处理后,系统的准确度明显提高,实验结果也更趋合理。  相似文献   

13.
为解决加速度计性能参数时变性的问题,提出了无依托状态下加速度计标定方法.在无需借助转台等传统标定设备、无需拆卸惯性元件的条件下,充分利用惯导系统(INS,Inertial Navigation System)自身资源,以静基座初始对准获得的准确姿态信息为前提,利用当地重力g作为标定基准,考虑到误差模型非线性的特点,引入非线性寻优策略辨识零位偏差,将误差模型蜕变为线性后,运用线性最小二乘方法辨识安装误差矩阵和刻度因数误差,从而实现加速度计关键参数标定.数值仿真结果显示:经过标定后加速度计测量误差可减小20倍,说明在无依托状态下具有工程实用价值.   相似文献   

14.
为了准确模拟飞行器在高速飞行时的瞬态气动加热状态,必须使用快速、高精度的计算机瞬态热能控制系统,对气动模拟试验的加热过程,实行快速、高精度的非线性动态控制.为此,传感器的快速、高精度"E-T"转换是一个必须解决的非常重要的问题.提出一种高速飞行器瞬态气动加热控制系统中传感器的快速、高精度"E-T"转换方法.该方法具有计算简单、转换速度快、校正精度高的优点,使用该方法实现了高速飞行器气动加热过程中温度场高速变化状态下的瞬态非线性动态控制.  相似文献   

15.
采用CAD技术对飞机燃油测量进行姿态误差修正   总被引:6,自引:2,他引:6  
为了实现飞机在任意姿态下燃油油量的测量,提出了一种基于CAD技术的飞机燃油油量实时测量方法.首先采用AutoCAD三维实体造型技术,建立了某飞机机翼油箱模型,然后介绍了带姿态误差修正的燃油油量的测量原理及测量系统的组成.利用油量传感器的输出值及飞机姿态信息,可以对燃油油量进行实时测量及姿态误差修正.试验结果表明,该方法运算速度快、测量准确.  相似文献   

16.
针对航天器多维安装在耦合情形下的标定问题,提出一种基于成像器观测的在轨标定方法,该方法有效克服了标定方程组的耦合非线性。首先,结合成像器观测的物理意义推导出其应满足的几何方程,并通过各机械机构的安装传递关系建立矢量方程,进而通过双矢量方式建立矩阵方程。其次,分析矩阵方程成立应当满足的必要条件,通过灵活运用"特征向量"的数学特性,对串联机械机构安装进行解耦,得出一种以成像器观测为基础的在轨标定数学方法,并将2维安装推广到n维安装的一般情形,给出标准的计算流程。最后,对标定方法进行了数学仿真验证,同时仿真分析了观测噪声对标定方法的影响,仿真结果表明灵活运用"特征向量"解耦标定的方法是有效的、准确的。   相似文献   

17.
基于航天工程中对于发动机试车台矢量推力现场动态校准需求,以摆锤式动态力加载装置为力源,研制了发动机试车台矢量推力现场动态校准装置。在发动机试车台试验校准点有限的情况下,将人工智能技术应用在校准工作中,对矢量推力的动态响应特性进行校准与补偿。验证结果表明,该方案动态性能优异,响应迅速,满足试车台矢量推力校准的需求,为后续进一步准确测试矢量推力提供了依据。  相似文献   

18.
远场测量是获得天线辐射特性的一种常用方法。然而对于一维电尺寸大,另一维电尺寸小的天线,如基站天线,由于场地因素的限制,往往不能满足远场测量条件,用近场测量又费时费力。在这种准远场条件下,天线测量结果与远场情况下的测量结果有较大差异。本文基于柱面波展开,给出了一种由准远场距离上测得的方向图计算远场的理论计算方法,经过该算法补偿后的结果与理论计算结果吻合很好,从而验证了算法的正确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号