首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 281 毫秒
1.
电阻有频率变差,电阻在交流状态下的溯源是计量领域的难题,以往采用交直流差可计算电阻实现了交流电阻的溯源,但存在稳定性和一致性较差的问题,当前采用交流量子化霍尔效应作为交流电阻标准成为计量领域的研究热点。其中需要解决交流量子化霍尔电阻及其向实物标准电阻传递的准确度问题。本文介绍了采用分裂式屏蔽结构克服交流量子化霍尔电阻频率误差的方法,研制10-8量级高准确度四端对电桥满足交流量子电阻的传递需求,研制完全等电位屏蔽结构的交流电桥校准装置保证四端对电桥的准确度,并介绍了交流量子电阻基准的应用领域。  相似文献   

2.
用射频溅射制备了一组厚度不同的NiSiB非晶态薄膜.在不同温度下,用不同时间对薄膜进行了循环退火.实验测量了循环退火后的薄膜电阻随温度的变化,得到可逆和不可逆两组曲线.厚度较大(>1 000)的薄膜,电阻随温度的增加而增大,厚度较小(<400)的薄膜,电阻随温度的增加而减小.电阻温度系数有正有负.从非晶态材料的结构弛豫出发,应用激活能谱模型和推广的Ziman理论讨论了实验所得的结果.  相似文献   

3.
检定一般的直流电桥需要多只高准确度标准电阻及一台高准确度电阻箱。对于检定测量范围为10~3~10~(12)Ω的高阻电桥是很难找全如此多的标准。为了克服此困难,介绍仪用一只高准确度标准电阻就能对高阻电桥进行检定的方法,本方法所用其它辅助电阻及电阻箱,只起平衡作用无准确度要求。因此短期稳定即可。此方法给计量检定人员提供了方便。  相似文献   

4.
一种测量接触电阻的新方法   总被引:3,自引:0,他引:3  
刘民 《宇航计测技术》2005,25(3):22-25,31
总结接触电阻的测试方法,讨论了产生测量不确定度的因素,对四线法测量原理和消除热电势的方法进行了论述。提出了接触电阻的间接测量法,给出了间接测量法的计算公式,该方法可以用于测试电气回路中的接触电阻,并可以应用在环路电阻标准器的计量校准中。  相似文献   

5.
设计了压力开关参数测试系统,能同时实现5个产品的触点接触电阻、绝缘电阻测试,动作压力和恢复压力测试。系统采用虚拟仪器技术,构建了以工控计算机及其板卡为硬件平台,以LabVIEW为软件平台的虚拟仪器测试系统。采用四端钮接法,实现了微电阻的测量,利用继电器逻辑实现了5个产品多参量的自动测试,并能根据测试结果自动判别产品是否合格。结果表明,该系统运行可靠,测试准确度高,测试效率高。  相似文献   

6.
针对热反射测温系统测温准确度验证结果不准确的问题,提出了一种热反射测温系统测温准确度的验证方法。采用以Si为衬底,利用半导体工艺制备金薄膜电阻,通过制作夹具,键合薄膜电阻与夹具的方式研制出验证电阻件。使用温控平台在30~100℃温度下对其进行温度系数考核,结果表明电阻件的阻值与温度有良好的线性关系。通过热电法计算出电阻件温度值,与热反射测温系统测量的电阻件温度值相比较,从而实现热反射测温系统测温准确度验证,保障了热反射测温系统的测温准确性。  相似文献   

7.
基于量子化霍尔效应建立电阻标准是当今前沿计量技术,是国际上定义电阻单位的最高标准,其核心部件是量子化霍尔电阻样品,传统砷化镓样品通常需要工作在10 T以上的强磁场环境中,磁体研制难度大,成本高,不易推广应用。随着量子电阻标准小型化、低成本化和国产化的发展,研制低磁场量子化霍尔电阻样品是发展趋势。介绍了砷化镓、石墨烯和铁磁拓扑材料三种低磁场量子电阻样品的原理,总结了研究现状和存在的问题,从磁场、温度、测量不确定度和技术成熟度等方面分析了三种方法的优势及不足,旨在为我国发展低磁场量子电阻标准提供理论基础。  相似文献   

8.
为了对高阻和超高阻进行测量,采用全等电位屏蔽电桥线路、比例校准技术,并配以高灵敏指零仪和精密高压电流,研制出了 JRH 型精密超高阻测量系统。该系统是一个高精度、自校准、在0~5000V 下能测量高阻、超高阻、电阻比、电阻变化和电阻电压系数的电桥系统.其测量范围为10~3……10~(15)Ω,测量准确度最高为5×10~(-5)。文中还叙述了电桥系统的工作原理、结构与线路设计、误差分析和测试结果.  相似文献   

9.
单片机在导弹绝缘电阻测试中的应用   总被引:5,自引:0,他引:5  
介绍了单片机在导弹绝缘电阻测试中的应用。阐述了单片机智能测试系统的组成 ,以及采用该系统运用矩阵思想和综合比较法测试绝缘电阻的原理 ,给出了采用PL/M高级语言进行程序设计的流程。  相似文献   

10.
机载设备ATS程控电阻设计   总被引:1,自引:0,他引:1  
程控电阻是在某机载设备自动测试系统(ATS)中应用于模拟输出具有阻值特性的模块。传统的程控电阻体积较大,精度较低且可靠性差;国外程控电阻模块精度较高但是价格昂贵,不利于大规模应用。介绍一种小型化高精度程控电阻设计方法,该程控电阻由控制器、继电器以及各阻值不等的精密电阻构成。控制器内部包括51单片机最小系统、E2PROM、485总线等集成器件。经实验,该电阻可程控完成(0~10)kW范围的阻值调节输出,电阻分辨力为2 W,可广泛应用于各种测试系统。  相似文献   

11.
工作电流对热敏电阻测温的影响   总被引:4,自引:0,他引:4  
热敏电阻是一种在航天领域广泛应用的测温元件,由于其一致性差,使用时必须给出每个元件的电阻-温度对应关系.在标定时,通过控制测量电流来防止热敏电阻发热.而在实际使用中,通过热敏电阻的电流很难控制,电流往往过大,引起热敏电阻发热,给测量带来误差.其误差取决于热敏电阻上消耗的功率.因此,选取温度上升值与热敏电阻上消耗的功率之比为修正系数,采用理论计算来对热敏电阻因电流增加所带来的测量误差进行修正.实践证明,修正系数在不同的温度与电流下基本不变.根据热敏电阻的型号和实际被测对象,测量出修正系数,用理论计算修正后将大幅减少电流引起的误差,保证测量的准确性.  相似文献   

12.
电阻作为重要的元器件在电气电子及其他非电领域得到了广泛应用,对其阻值进行准确溯源和量值传递至关重要。相较于实物电阻计量标准,量子化霍尔电阻标准稳定性和准确性更高。目前我国国家/国防量子化霍尔电阻计量基准是基于砷化镓-铝砷化镓异质材料制成的,其对环境温度和外磁场要求高,普通计量实验室难以复现。石墨烯材料的出现为新型量子化霍尔电阻基准/标准的研制提供了可能。本文简述了石墨烯材料的制备方法及其量子化霍尔效应,介绍了石墨烯量子化霍尔效应的国外研究现状,分析了基于石墨烯材料的量子化霍尔电阻标准在研制过程中存在的问题,旨在为我国新型量子化霍尔电阻标准的研制提供参考。  相似文献   

13.
我国原有铀矿γ测井模型标准铀含量上限为1.09%,应用其校准的γ测井仪对高品位铀矿的测量结果曾饱受争议。在2014年研建高品位(1.83%、5.09%)铀模型后,用其对γ测井仪的计量特性在进行了试验验证后,结果表明仪器死时间和铀含量灵敏度没有显著变化,说明γ测井仪在铀含量5%以内的测量结果仍然可靠。  相似文献   

14.
实验研究了钛合金和高反射型陶瓷涂层材料抗连续型激光烧蚀的损伤及温度分布特性,并从热效应影响角度对比分析了二者在抗激光损伤效果方面的差异性。研究结果表明:相比于钛合金,高反射型陶瓷涂层材料能有效增强钛合金基底抗激光损伤的能力;在同等激光功率密度辐照下,陶瓷涂层材料能有效提升钛合金基底耐受激光辐照的时间长度。实验结果表明该陶瓷涂层材料的激光损伤阈值比钛合金高约5.8倍。实验发现陶瓷涂层温升速率高于钛合金,但由于陶瓷材料具有较高的反射特性,以及良好的热吸收和热传导特性,因此能使由激光辐照产生的热量在其表面较快地扩散,而降低向基底方向传导的程度,最终提升陶瓷涂层的抗激光损伤阈值。  相似文献   

15.
    
超流体量子干涉陀螺采用热驱动方式时,陀螺内部流量、压强、温度多参数变化及相互影响,致使加热电阻功率与超流体在弱连接处形成的约瑟夫森频率关系复杂。为了保证陀螺持续稳定的工作在约瑟夫森频率下,必须对陀螺内部约瑟夫森频率的形成机理进行精确建模。针对超流体陀螺热驱动工作方式,首先,从陀螺内腔流体的熵变角度出发,建立了陀螺的温度变化、压强变化和输入-输出模型;然后,仿真分析了在恒定加热电阻功率和线性时变加热电阻功率时超流体陀螺温度和压强随时间的变化特性,对比不同加热电阻功率对陀螺的化学势差和约瑟夫森频率的影响,得出加热电阻功率的工作区间以及约瑟夫森频率的范围;最后,探索分析了约瑟夫森频率对超流体陀螺输出和陀螺精度的影响。  相似文献   

16.
喷涂粉末对Al-Cu-Fe准晶涂层组织结构的影响   总被引:1,自引:0,他引:1  
准晶材料具有低热导率、低磨擦系数、良好的耐磨性和抗氧化性、高硬度、高温塑性等优异性能,使之适于作为表面防护涂层.为了提高钛合金的抗高温氧化性能和耐磨性能, 采用低压等离子喷涂方法LPPS (Low Pressure Plasma Spraying)在钛合金表面制备了Al-Cu-Fe准晶涂层.通过改变喷涂粉末的成分和粒度大小,研究了喷涂粉末对制备态涂层相结构及微观形貌的影响. 由X-射线衍射XRD(X-Ray Diffraction)、扫描电镜SEM(Scanning Electronic Microscope)分析得出:采用原子比为Al70Cu20Fe10、粒度为-325目的粉末制备的涂层,在800℃下真空退火处理2?h后,结构均匀致密,二十面体准晶相(I相)含量高,并只含有少量的β相.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号