首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
选用了神舟2号(SZ-2)大气密度探测器在2001年2—4月间的探测数据,进行日照和阴影区域热层大气密度变化的探讨.结果表明:在高度410km附近,日照和阴影区域大气密度变幅为2—3倍,变幅的大小与地磁活动程度呈负相关关系.日照面大气密度峰区位于星下点地方时1400—1500LT的纬度处,峰值大小与太阳活动程度呈正相关关系.阴影面大气密度谷区位于星下点地方时0400-0500的纬度处,同时在±10°纬度区域中还出现了阴影面峰区.  相似文献   

2.
"神舟3号"运行高度上大气密度的变化   总被引:4,自引:2,他引:4  
"神舟3号"(SZ-3)大气密度探测器搭载在SZ-3留轨舱上于2002年3月发射入轨,在轨运行期间获得了轨道舱运行高度范围(330-410km)内的大气密度数据.数据分析表明,无明显太阳和地磁扰动时,热层大气密度的主要变化之一是日照和阴影区域之间的涨落变化,最大涨落变化比约为3.0,变化比与太阳和地磁活动程度有关.在2002-04-17和2002-04-19的强地磁扰动时,全球热层大气密度上涨,同时在磁扰峰期探测获得30°N-40°N区域出现密度扰动异常现象.对强地磁扰动在运行轨道高度上大气密度最大涨幅约为60%左右,响应过程在时间上要比地磁扰动过程滞后6-7h,日照和阴影区域中大气密度的响应变化程度明显不同.在太阳活动程度发生变化时,热层大气密度会呈现出明显的正相关变化关系.  相似文献   

3.
神舟4号大气成分探测的新结果   总被引:2,自引:0,他引:2  
神舟4号(SZ-4)大气成分探测器搭载在SZ-4留轨舱上于2002年12月30日发射入轨,在在轨运行的前3个多月中,正值地球南半球处于夏半球季节,并发生了多次中低强度的地磁扰动事件,SZ-4大气成分探测器测得了轨道舱运行高度上(330-362km附近)大气成分的响应变化和异常现象新结果.探测数据表明,中低强度的地磁扰动事件也能引起热层大气中主要成分O和N2的数密度值增高的响应变化.同样在进入地磁扰动峰期后较高纬度处出现了N2的异常增变和O的异常降变以及大气密度异常扰动的现象,但此期间所出现异常现象的地域与SZ-3和SZ-2大气成分探测器探测结果相反,它仅位于南半球较高纬度地区.  相似文献   

4.
在第23至第24太阳活动周的峰年之间,太阳活动谷年具有持续时间长,极低F10.7太阳辐射通量(低至65)和超长期的零太阳黑子数记录等特点,因此是观测和研究在这种特殊背景下热层大气变化的极好机会.尤其是能充分理解和掌握在宁静环境下热层大气密度对弱太阳活动和小地磁扰动的响应特性.本文利用高度650 km以上星载大气密度探测器2007—2009年的连续探测数据进行分析,结果表明,在太阳辐射通量F10.7极低值期间,较高热层大气密度对F10.7的起伏具有更显著的响应变化.当F10.7由70降至65时,日均大气密度会有4~5倍的显著降变,远大于通常大气模式中的降变值.同样在F10.7极低值期间,较高热层大气密度对小地磁扰动也具有显著的响应增变,当日Kp指数之和由23增至30时,较高热层大气密度则会有80%~160%的强增变.  相似文献   

5.
"神州三号"(SZ-3)大气成分探测器搭载在SZ-3留轨舱上于2002年3月26日发射入轨,正遇2002年4月发生的连续两次地磁扰动事件,SZ-3大气成分探测器测得了轨道舱运行高度上(330-350 km附近)大气成分的响应变化和异常现象.探测数据表明,在地磁扰动期间,不仅发生了大气中主要成分O和N2的数密度值增变的响应变化,而且在进入地磁扰动峰期开始后6h左右在较高纬度处出现了N2的异常增变和O的异常降变.4-5h后,这种异常增变峰和降变谷由纬度42°N左右逐渐推移向纬度较低地区,直至消失.  相似文献   

6.
选用了2005年8月20日至2006年7月28日高度550~600 km附近的热层大气密度探测数据,对表征太阳活动的F10.7值和表征地磁活动强度的Ap指数进行了相关特性的统计.分析结果表明,在无明显地磁扰动时热层大气密度日平均值的涨落呈现27日和准半年的周期性变化,但在地磁扰动期间这种变化的周期性会被削弱,且大气密度的周日变化幅度与F10.7值呈正相关关系.   相似文献   

7.
2005年8月24日强磁暴事件对高层大气密度的扰动   总被引:6,自引:1,他引:5  
对2005年8月24日发生的突发型强磁暴(Kp峰值达到9)事件,利用星载大气密度探测器在轨实时的连续探测数据进行了处理和分析.结果表明,此次强磁暴事件期间,引起560 km高度附近大气密度剧烈扰动,并存在着两种响应过程.一种是跟随地磁扰动程度变化的全球性大气密度涨落变化,响应时间滞后6h左右, 最大涨落变化比为2.5;另一种为磁暴峰期出现在高纬地区的大气密度突发性跃增,增变比高达5.5.后者存在着区域上的不对称性及时间上的突发性和增幅的差异.此次强磁暴峰期还同时出现了南北半球高纬地区的大气密度跃增双峰.同时还表明这种增变峰可能存在着由高纬向低纬地区迅速推移的现象,在中纬地区推移速度可达15°/h(纬度)左右.   相似文献   

8.
利用CHAMP/STAR加速度数据反演的热层大气密度与NRLMSISE-00模式反演的热层大气密度进行比较, 结果表明, 热层大气密度在春秋季期间高于冬夏季, 并且太阳活动高年比低年更加显著; 日照面和阴影区大气密度的比值在低纬地区由太阳活动高年的4下降到太阳活动低年的2左右, 中纬地区大约由3变化到1.5, 高纬地区变化较小; NRLMSISE-00模式能够较好地模拟热层大气密度的变化趋势, 但是磁暴期间模式精度较差. 统计结果表明, 模式整体比反演结果偏高, 2002-2008年相对偏差分别为16.512%, 20.004%, 18.915%, 18.245%, 25.161%, 33.261%和41.980%; NRLMSISE-00模式在高纬地区的相对偏差为27.337%, 高于中低纬地区的24.047%; 模式在中等太阳活动水平相对偏差较为稳定, 基本在15%左右.   相似文献   

9.
太阳活动与热层大气密度的相关性研究   总被引:3,自引:2,他引:1       下载免费PDF全文
为分析太阳活动对热层大气的影响,使用250km,400km,550km高度处热层大气密度与太阳F10.7指数数据,研究了二者的周期变化及相关关系. 结果表明,热层大气密度的变化与太阳活动呈现相似的变化趋势;两者均具有显著的27天及11年周期变化特征,热层大气密度还存在7~11天及0.5年和1年的变化特征,且高度越高越明显;热层大气密度对太阳活动的最佳响应滞后为3天,无论何种地磁活动水平下,400km高度处相关性高于250km,550km处相关性最小,且太阳活动下降相期间高于上升相;250km,400km和550km高度处热层大气密度和太阳活动的统计结果分别为饱和、线性和放大关系;高度越高的热层大气密度对太阳活动响应越敏感.   相似文献   

10.
利用NCAR-TIEGCM模式计算了2003年11月20—21日强磁暴期间410km高度上的大气密度,并与CHAMP/STAR加速度计反演数据进行对比和分析. 结果表明,模式结果能够准确反映磁暴期间大气密度的分布和变化情况,与实测结果在变化趋势和量级上具有较好的一致性,但在精细结构和数值大小上仍存在一定差异. 模式低估了磁暴期间大气密度的增幅,实测大气密度增幅高达250%~400%,而模式结果为100%~125%. 模式结果与实测数据的偏差在高纬地区高于低纬地区,日侧高于夜侧. 通过模式和实测数据的分析发现,磁暴期间大气密度扰动具有日夜侧和南北半球不对称性. 此外,模式能够准确反映磁暴期间大气密度扰动从高纬向低纬的传播以及大气密度对SYM-H指数响应的延迟特性.   相似文献   

11.
基于TIMED/SABER 2002—2018年大气密度观测数据,统计分析了20~80 km大气密度扰动对高超声速飞行器飞行热环境的影响。根据驻点热流估算方法给出的大气密度变化量与热流变化量之间的关系,定性和定量分析了不同月份大气密度相对变化量引起的热流变化量在垂直和水平方向的分布特征。研究表明:SABER大气密度月年均值计算的热流相对USSA76在夏季半球中高纬度地区偏高,在冬季半球偏低。在夏季半球高纬度地区约80 km附近存在热流增量的极大值,南半球夏季的极大值高于北半球夏季,尤其在南半球1月份,热流偏高可达32.2%。在经度方向,热流分布在夏季半球差异较小,冬季半球差异较大;考虑真实大气中存在的扰动时,在南半球和北半球夏季80 km附近,SABER大气密度预测的热流分别比USSA76偏高可达40.7%和36.6%。在经度方向,大气扰动引起的热流经向分布差异显著。在飞行器设计时,大气扰动的影响不能忽略;高超声速飞行器飞行应避免在夏季穿越南半球和北半球,规避热流增加带来的风险。   相似文献   

12.
强磁暴、能量粒子暴与热层大气密度涨落之间的相关关系   总被引:2,自引:0,他引:2  
利用1997-2007年由GOES8, GOES11和GOES12星载高能粒子探测器在地球同步轨道高度上所探测到的高能质子和高能电子通量探测数据以及高度560km左右星载大气密度探测器所得的热层大气密度探测数据, 统计分析了强地磁扰动、高能粒子通量跃变和热层大气密度涨落之间的相关关系, 初步获得强地磁扰动期间, 地球同步轨道(外辐射带外环)均出现了增幅大于三个数量级的高能质子通量(尤其是E>1MeV)强增强现象, 随后热 层大气密度强烈上涨, 表明三者之间是正相关关系. 在时间上地球同步轨道高能质子通量强增强现象先于日均Ap值(地磁活动程度)上涨约一天左右, 而热层大气密度强涨落现象又明显滞后于强地磁扰动事件.   相似文献   

13.
在强地磁活动期间热层大气成份和密度的变化   总被引:4,自引:4,他引:0  
选用了1974-07-06,1982-03-02和1982-09-06三次强地磁活动时的Ap值,由AE-C和DE-B卫星所测得的热层成份数据,进行统计分析,结果表明;在强地磁活动期间,热层大气密度涨落变化十分清晰、涨幅随高度增高而增大,高度600km附近涨幅可直达4倍,热层大气成份中N2的数密度涨幅最大,而原子氧的丰度在强地磁活动期间明显地下降。  相似文献   

14.
利用GRACE(Gravity Recovery And Climate Experiment)和CHAMP(Challenging Mini-Satellite Payload)卫星2002-2008年的大气密度数据与NRLMSISE-00大气模型密度结果进行比较,分析了模型密度误差及其特点.结果显示,NRLMSISE-00大气模型计算的密度值普遍偏大,其相对误差随经纬度变化,在高纬度相对较小;相对误差随地方时变化,在02:00LT和15:00LT左右较大,10:00LT和20:00LT左右较小.通过模型密度相对误差与太阳F10.7指数的对比分析发现,在太阳活动低年模型相对误差最大,而在太阳活动高年相对误差较小;将模型结果分别与GRACEA/B双星和CHAMP卫星的密度数据进行比较,发现对于轨道高度更高的GRACE卫星轨道,模型相对误差更大;在地磁平静期,相对误差与地磁ap指数(当前3h)相关性不强,但是在大磁暴发生时,误差急剧增大.   相似文献   

15.
利用NCAR-TIEGCM计算了第23太阳活动周期间(1996—2008年)400km高度上的大气密度,并统计分析大气密度对太阳辐射指数FF10.7的响应.结果表明,在第23太阳活动周内,大气密度的变化趋势与太阳辐射指数FF10.7的变化趋势基本一致,但是大气密度在不同年份、不同月份对太阳辐射指数FF10.7的响应存在差异.第23太阳活动周内太阳辐射极大值和极小值之比大于4,而大气密度的极大值与极小值之比则大于10.太阳辐射低年的年内大气密度变化不到2倍,而太阳辐射高年的年内大气密度变化可达2倍甚至3倍.大气密度与FF10.7指数在北半球高纬的相关系数比南半球高纬的相关系数大.在低纬地区,太阳辐射高年大气密度与FF10.7指数的相关系数比低年的大.不同纬度上,大气密度与太阳辐射指数FF10.7的27天变化值之间的相关系数都大于其与81天变化值之间的相关系数.   相似文献   

16.
一种区域参考大气密度的建模与应用方法   总被引:1,自引:1,他引:0  
为满足空天试验研究中对参考大气模型的实际需求,即模型应具有跨时空的全球尺度覆盖性以及在起降关键航迹点的高精度性,提出了一种区域参考大气密度的建模与应用方法。首先对实测数据的冬夏季典型月份的大气密度特性,具体包括月均值与密度扰动进行统计分析,在此基础上提出了基于探空试验实测数据的全球参考大气模型(GRAM)的定量修正方法,从而构建起了包含有大气扰动与季节变化的区域参考大气密度模型。最后提出了区域参考大气密度模型向GRAM的过渡方法与实际应用方法。研究表明,探测地区的大气密度特性具有明显的冬夏季节性差异,需要根据季节构建相应的大气密度模型。区域参考大气模型的蒙特卡罗仿真可以有效模拟实测数据的大气密度特性。通过与GRAM过渡结合,参考大气模型既具有全球覆盖性,又具有很高的局部精度。   相似文献   

17.
基于TIMED/SABER卫星2002—2018年观测的20~100 km大气密度数据,统计获得多年月平均值和标准偏差的全球网格数据。利用网格数据,分析了大气密度的变化特征。以网格数据为基准,计算了USSA76的相对偏差,分析了USSA76相对偏差的分布特征。以网格数据为驱动,将大气密度表征为平均值与大尺度扰动量和小尺度扰动量的加和,大尺度扰动和小尺度扰动分别采用余弦函数和一阶自回归模型表征,初步建立了全球临近空间大气密度模型。通过对比模型仿真值与激光雷达观测值,表明模型仿真值与观测值具有较好的吻合度,验证了建模方法的可行性。利用蒙特卡罗方法可再现给定轨迹上所有可能的大气状态。   相似文献   

18.
  总被引:2,自引:1,他引:1  
针对临近空间大气环境复杂时空变化的定量表征和仿真建模,基于11年TIMED/SABER大气密度数据,采用网格划分和数学统计的方法,得到了38°N大气密度在20~100 km的气候平均值和标准差。定量结果用于表征和分析了静态缓变气候平均态以及动态瞬变大气扰动态的变化规律,结果表明,38°N大气平均密度随高度、季节、经度变化显著。在此基础上,提出了临近空间大气密度表征为气候平均量和大气扰动量之和的建模方法,并建立了大气随机扰动自回归模型,通过仿真试验及与激光雷达大气密度实测数据的比较,结果表明该建模方法可行。  相似文献   

19.
统计研究漠河、北京、武汉流星雷达观测到的2012-2018年80~100 km高度的风场数据,比较在地磁平静期(Kp≤2)和地磁扰动期(Kp≥4)的日平均风场数据,得到在地磁活动期风场的变化特征。研究结果表明,在地磁扰动时风场变化具有季节差异和纬度差异。地磁扰动期间,纬向风在较高纬度地区倾向于中间层西风增强,低热层东风增强,纬度较低地区倾向于东风增强。春季,地磁活动对纬向风的影响没有纬度差异,在夏冬季随着纬度的降低中间层东风增强明显。地磁活动对经向风的影响具有季节差异,对春冬季节的影响强于夏秋季节。研究表明,地磁活动对纬向风的影响可达9 m·s–1左右,对经向风的影响可达5 m·s–1左右。地磁活动对中性大气风场的影响可达80 km。  相似文献   

20.
利用CHAMP卫星数据,对2002-2008年12个不同强度磁暴事件期间的热层大气密度变化特征进行分析,并研究对应磁暴期间大气模式NRLMSISE-00分布特征.结果表明,大磁暴期间日侧大气密度峰值从高纬到低纬的时间延迟为2h,中小磁暴期间的延迟时间为3~4h;春秋季暴时大气密度分布基本呈南北对称分布,而夏冬季大气密度的分布是夏半球大于冬半球,春秋季暴时大气密度大于夏冬季;NRLMSISE-00大气模式得到的热层大气密度很好的体现了半球分布以及季节分布的特征,但模式模拟结果偏小;Dst指数峰值比ap指数峰值更能反应大气密度的变化情况.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号