首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect of HZE particles and space hadrons on bacteriophages.   总被引:2,自引:0,他引:2  
The effect of high energy (HZE) particles and high energy hadrons on T4Br+ bacteriophage was analyzed. The experiments were done in orbital flight, on high mountains, on an accelerator, and with an alpha particle source. We studied the survival rate of the bacteriophage, the mutation frequency, the mutation spectrum and the revertability under the action of chemical mutagens with a known mechanism of action on DNA. It was found that the biological efficiency of HZE particles and high energy hadrons is greater than that of gamma radiation. The spectra of mutations produced by these mutations and the mechanisms of their action are also different. These effects were local, because of the mode of interaction of the radiant energy with biological objects, and depended on the linear energy transfer (LET). The modes have now been experimentally defined.  相似文献   

2.
The major effect of stratospheric ozone loss will be an increase in the amount of ultraviolet radiation reaching the ground. This increase will be entirely contained within the UV-B (290–320nm). How this will impact life on Earth will be determined by the UV-B photobiology of exposed organisms, including humans. One of the analytical methods useful in estimating these effects is Action Spectroscopy (biological effect as a function of wavelength). Carefully constructed action spectra will allow us to partially predict the increase in bio-effect due to additional UV exposure. What effect this has on the organism and the system in which the organism resides is of paramount importance. Suitable action spectra already exist for human skin cancer, human cell mutation and killing, and for one immune response. Comprehensive and widely applicable action spectra for terrestrial and aquatic plant responses are being generated but are not yet suitable for extensive analysis. There is little data available for animals, other than those experiments completed in the laboratory as model systems for human studies. Some polychromatic action spectra have proven useful in determining the possible impact of ozone loss on biological systems. The pitfalls and limits of this approach will be addressed.  相似文献   

3.
DNA double-strand breaks (DSBs) are the crucial events ultimately leading to cell inactivation. Aimed at understanding the biological action of the charged particle component of cosmic radiation, the induction of DSBs and their repairability was evaluated in Chinese hamster ovary (CHO-K1) cells after exposure to accelerated particles. Irradiations were performed with various ion species including O, Ni and Ca, covering a LET range from 20 to 2000 keV/micrometer. DSBs were determined for plateau-phase cells using the electrophoretic elution of radiation-induced DNA fragments in a static electric field combined with fluorescence scanning of ethidium bromide stained gels. Assuming a DSB yield of 22 DSB per Gy per cell, as derived from X-irradiation, cross-sections for DSB production were calculated from the corresponding fluence-effect curves at a fraction of 0.7 of DNA retained. The same ordinate was used as a reference for the calculation of relative biological efficiency (RBE) for DSB induction. At low LETs (< or = 20 keV/micrometer) RBE values slightly above unity were obtained, but a decrease of RBE was observed with increasing LET. In the region of 100-200 keV/micrometer the RBE for initial DSB induction was clearly below unity. Rejoining of DSBs was assessed by measuring the fraction of DNA retained following post-irradiation incubation of cells under culture conditions. After exposure to Ca ions, DSB rejoining was considerably impaired compared to X-rays.  相似文献   

4.
中子周围剂量当量是核电站辐射防护监测的主要对象之一,而中子周围剂量当量的评估强烈依赖中子的能量分布。利用自制的多球谱仪对秦山第三核电有限公司(TQNPC)重水反应堆安全壳内5个位置的中子能谱和周围剂量当量率进行了测量。该谱仪由1个3He正比计数器以及9个2.5~12英寸不同直径的聚乙烯球组成,响应函数通过MCNP程序计算,并利用标准252Cf中子源进行了校准和验证。通过测量的中子能谱,获得了不同工作区域的中子周围剂量当量率及其能量分布,并与中子周围剂量当量率仪和CR-39径迹蚀刻探测器的测量结果进行了比较,为核电站中子剂量的监测提供了相关参考数据。  相似文献   

5.
Modern studies now favor the fact that extraterrestrial organic molecules served as an important source of biological important substances on the primitive Earth. It is presumed that these space-made organic molecules could be transported safely to the Earth surface being associated with mineral grains. It is important to test whether nucleotides synthesized in Earth orbit could be protected by lunar surface regolite. The phosphorylation of adenosine, uridine and thymidine has been studied with respect of their further transformations and degradation in presence of mineral bed. After retrieval, HPLC analysis is used to identify all the mononucleotides of certain nucleosides. It has been shown, that exposure of the investigated nucleosides as dry films in space conditions in the presence of Lunar soil increases the yield of synthesized nucleotides in 1.1-3.0 times as compared with the exposure of the same samples in absence of Lunar soil. To identify and evaluate the principal source of energy in open space responsible for nucleotide synthesis reaction laboratory experiments were performed. It has been shown, that vacuum ultra violet (VUV 145 nm) radiation promotes nucleotide synthesis more effectively than ultra violet (UV 254 nm) while the presence of Lunar soil increases reaction yield in 1.5-2.0 times. Formation of 5'-mononucleotides seemed to be the most effective reaction both in flight and in laboratory experiments. Protective action of lunar soil on synthesized nucleotides against UV radiation has been shown in open Space conditions.  相似文献   

6.
All radiations originate in space, and the spectrum of radiations reaching the troposphere is limited only because of their range and absorption by the ozone layer above the atmosphere. Ultraviolet-C and the very heavy ions are therefore produced on earth only artificially, by special lamps and in accelerators. The range of biological effects of the different UV radiations and low and high LET radiations have been studied extensively, yet only recently new facts such as the production of DNA strand breaks by long wave UV light were established, adding to the various points of encounter existing between ionizing and nonionizing radiations. There are some similarities in radiation products, and the resulting effects of insult by radiation on biological systems very often are similar, if not the same. A common phenomenon that exists in all healthy biological cells is the ability to repair damage to DNA and thus either survive or mutate, and although the specific mechanisms of repair are somewhat different, the end result is the same. Recently a mechanism of improved radioprotection was found to involve an effect of certain radioprotective compounds on DNA repair. It is suggested that improved, and nontoxic, modes of protection may be offered by employing such compounds as biological response modifiers and natural substances. Further research is needed and is under way.  相似文献   

7.
In radiation protection, the Q-factor has been defined to describe the biological effectiveness of the energy deposition or absorbed dose to humans in the mixed radiation fields at aviation altitudes. This particular radiation field is generated by the interactions of primary cosmic particles with the atoms of the constituents of the Earth’s atmosphere. Thus the intensity, characterized by the ambient dose equivalent rate H∗(10), depends on the flight altitude and the energy spectra of the particles, mainly protons and alpha particles, impinging on the atmosphere. These charged cosmic projectiles are deflected both by the interplanetary and the Earth’s magnetic field such that the corresponding energy spectra are modulated by these fields. The solar minimum is a time period of particular interest since the interplanetary magnetic field is weakest within the 11-year solar cycle and the dose rates at aviation altitudes reach their maximum due to the reduced shielding of galactic cosmic radiation. For this reason, the German Aerospace Center (DLR) performed repeated dosimetric on-board measurements in cooperation with several German airlines during the past solar minimum from March 2006 to August 2008. The Q-factors measured with a TEPC range from 1.98 at the equator to 2.60 in the polar region.  相似文献   

8.
Amongst the great variety of heavy particles present in the galactic and solar cosmic ray spectra, hydrogen and helium nuclei are significantly more abundant than all other heavier ions and, as such, represent a major radiation hazard to humans in space. Experimental data have suggested that differences in relative biological effectiveness (RBE) exist between the two species at the same value of linear energy transfer (LET). This has consequences for heavily ionising radiation protection procedures, which currently still assume a simple dependence of radiation quality on LET. By analysing the secondary electron (delta-ray) emission spectra of protons and alpha particles, in terms of the spatial characteristics of energy deposition in cellular targets and the likelihood of complex lesion formation, a numerical quantity representing biological effectiveness is generated. When expressed relative to a reference radiation, this quantity is found to differ for protons and a particles of the same LET, demonstrating not only the ion-specific nature of RBE but also the inadequacy of specifying radiation quality as a function of LET only. Such a method for numerically assessing radiation quality may have implications for procedures for heavy ion protection in space at low doses and for understanding the initial mechanisms of radiation action.  相似文献   

9.
Radiation in low Earth orbit (LEO) is mainly composed of galactic cosmic rays (GCR), solar energetic particles and particles in SAA (South Atlantic Anomaly). The biological impact of space radiation to astronauts depends strongly on the particles’ linear energy transfer (LET) and is dominated by high LET radiation. It is important to measure the LET spectrum for the space radiation field and to investigate the influence of radiation on astronauts. At present, the preferred active dosimeters sensitive to all LET are the tissue equivalent proportional counter (TEPC) and the silicon detectors in various configurations; the preferred passive dosimeters are CR-39 plastic nuclear track detectors (PNTDs) sensitive to high LET and thermoluminescence dosimeters (TLDs) as well as optically stimulated luminescence dosimeters (OSLDs) sensitive to low LET. The TEPC, CR-39 PNTDs, TLDs and OSLDs were used to investigate the radiation field for the ISS mission Expedition 13 (ISS-12S) in LEO. LET spectra and radiation quantities (fluence, absorbed dose, dose equivalent and quality factor) were measured for the space mission with different dosimeters. This paper introduces the role of high LET radiation in radiobiology, the operational principles for the different dosimeters, the LET spectrum method using CR-39 detectors, the method to combine the results measured with TLDs/OSLDs and CR-39 PNTDs, and presents the LET spectra and the radiation quantities measured and combined.  相似文献   

10.
The Spectral Airglow Temperature Imager is an instrument for ground-based spectroscopic measurements of the night-glow atmosphere emissions. This instrument was developed specially for gravity wave investigation. The measured airglow spectra are matched to synthetic spectra calculated in advance for determination of the temperature in the mesopause region where the radiation maximum of some О2 emissions is situated. The synthetic spectra are transformed into a format which corresponds to the measured spectra in order to be matched. This transformation is based on the known values of the refractive index and the central wavelength of the interference filter used. A substantial part of the processing algorithms of the SATI images is connected with determination of these two filter parameters. The results of the original and newly-proposed algorithms for filter parameter calculation and their importance for the final results for temperature determination on the basis of the О2 (864–868 nm) emission measurements are presented.  相似文献   

11.
Solar and space radiation have been monitored using the R3D-B2 radiation risks radiometer-dosimeter on board a recent space flight on the Russian satellite Foton M2 within the ESA Biopan 5 facility mounted on the outside of the satellite exposed to space conditions. The solar radiation has been assayed in four wavelength bands (UV-C, 170–280 nm, UV-B, 280–315 nm), UV-A (315–400 nm) and PAR (photosynthetic active radiation, 400–700 nm). The data show an increasing tumbling rotation of the satellite during the mission. The photodiodes do not show a cosine response to the incident light which has been corrected. After calibration of the signals using the extraterrestrial spectrum, doses have been calculated for each orbit, for each day and for the total mission as basic data for the biological material which has been exposed in parallel in the Biopan facility. Cosmic ionizing radiation has been monitored and separated in 256 deposited energy spectra, which were further used for determination of the absorbed dose rate and flux. Basic data tables were prepared to be used by other Biopan 5 experiments. The paper summarizes the results for the Earth radiation environment at the altitude (262–304 km) of the Foton M2 spacecraft. Comparisons with the predictions of NASA Earth radiation environment experimental models AE-8 and AP-8, and the PSB97 model are also presented, which calculate the fluxes of ionizing radiation from a simulation. AP-8 is a model for trapped radiation.  相似文献   

12.
The exposure of astronauts and electronics to the cosmic radiation especially to the particle component pose a major risk to all space flights. Up to now it is not possible to quantify this risk within acceptable limits of accuracy. This uncertainty is not only caused by difficulties in the more or less exact prediction of the incidence of the cosmic radiation but depends also on the problem of the quantification of the radiation field and the correlation of the biological effect. Usually the biological action of a mixed radiation field is estimated as product of the measured dose with an average quality factor, the relative biological efficiency. Because of the large variation in energy and atomic number of the cosmic particles, average values of the quality factor are not precise for risk estimation. A more appropriate way to treat the biological effects of mixed radiation is the concept of particle fluence and action cross section.  相似文献   

13.
The World Space Observatory Ultraviolet (WSO/UV) is a multi-national project grown out of the needs of the astronomical community to have future access to the UV range. WSO/UV consists of a single UV telescope with a primary mirror of 1.7 m diameter feeding the UV spectrometer and UV imagers. The spectrometer comprises three different spectrographs, two high-resolution echelle spectrographs (the High-Resolution Double-Echelle Spectrograph, HIRDES) and a low-dispersion long-slit instrument. Within HIRDES the 102–310 nm spectral band is split to feed two echelle spectrographs covering the UV range 174–310 nm and the vacuum-UV range 102–176 nm with high spectral resolution (R > 50,000). The technical concept is based on the heritage of two previous ORFEUS SPAS missions. The phase-B1 development activities are described in this paper considering performance aspects, design drivers, related trade-offs (mechanical concepts, material selection etc.) and a critical functional and environmental test verification approach. The current state of other WSO/UV scientific instruments (imagers) is also described.  相似文献   

14.
We have examined the conditions for the establishment of charge equilibrium of solar particles during their acceleration. We derive criteria for charge interchange with the atomic and ionized hydrogen at the particles'sources, for two different acceleration mechanisms. It is found that charge interchange is established whenever a particle event is produced. The implications related to mass and charge spectra of particles are discussed. The measured charge state of solar particles cannot in general be directly used for diagnosis of the source temperature, so we suggest another alternative based on the emitted radiation from electron capture.  相似文献   

15.
Beyond the magnetic influence of the Earth, the flux of galactic cosmic radiation (GCR) represents a radiological concern for long-term manned space missions. Current concepts of radiation quality and equivalent dose are inadequate for accurately specifying the relative biological "efficiency" of low doses of such heavily ionising radiations, based as they are on the single parameter of Linear Energy Transfer (LET). Such methods take no account of the mechanisms, nor of the highly inhomogeneous spatial structure, of energy deposition in radiation tracks. DNA damage in the cell nucleus, which ultimately leads to the death or transformation of the cell, is usually initiated by electrons liberated from surrounding molecules by the incident projectile ion. The characteristics of these emitted "delta-rays", dependent primarily upon the charge and velocity of the ion, are considered in relation to an idealised representation of the cellular environment. Theoretically calculated delta-ray energy spectra are multiplied by a series of weighting algorithms designed to represent the potential for DNA insult in this environment, both in terms of the quantity and quality of damage. By evaluating the resulting curves, and taking into account the energy spectra of heavy ions in space, a relative measure of the biological relevance of the most abundant GCR species is obtained, behind several shielding configurations. It is hoped that this method of assessing the radiation quality of galactic cosmic rays will be of value when considering the safety of long-term manned space missions.  相似文献   

16.
Current analyses of heavy ion action assume that the survival probability of a cell hit by a heavy ion depends only on the energy absorbed in its critical site. It is known, however, that the efficiency to produce a biological effect depends also on the spatial pattern of energy deposition. This has to be included in the quantitative evaluation of heavy ion action. Based on recent models of lesion formation by ionizing radiation (Goodhead and Brenner, Phys. Med. Biol. 28, 485, 1983) data with lighter ions (LET < 500 keV/micrometer) were re-analysed. It is shown that the behaviour of various cell systems can be described by a common curve which can be used to estimate the contribution of "non-linear" components (i.e. where the distribution of energy deposition plays a role) with heavy ions. It is concluded that even with Uranium ions the regions of non-linear effects does not extend beyond 50 nm from the trade core. These data will be used to assess quantitatively survival curves obtained with very heavy ion exposure.  相似文献   

17.
Radiation effects of cosmic ray nuclei are generally described as a function of the particle LET. For a large number of space missions LET spectra have been measured and models have been developed to calculate these spectra that include the effects of geomagnetic shielding and shielding provided by material. In this paper we compare measured and calculated LET spectra. For low earth orbits events with high local energy deposition, i.e., short range secondaries, contribute significantly to the measured spectra. These events are produced by nuclear interactions, mainly induced by protons from the south atlantic anomaly. The technique to include these contributions in the models depends on the size of radiation sensitive volumes. For sizes comparable to or larger than the range of target secondaries it is essential to separate contributions by target interactions from those of cosmic rays. This separation is possible in experiments which use stacks of plastic nuclear track detectors. The yield of short range events generated by protons and measured in the detector can be calibrated from accelerator experimental data. We present first results for CR-39 detectors.  相似文献   

18.
We have aimed to present a comprehensive review of our understanding to date of the formation of DNA strand breaks induced by high LET radiation. We have discussed data obtained from DNA in solution as well as from the formation and "repair" of strand breaks in cell DNA. There is good agreement, qualitatively, between these two systems. Results were evaluated for two parameters: (1) effectivity per particle, the cross section (sigma) in micrometers 2/particle; and (2) the strand break induction frequency as number of breaks per Gy per unit DNA (bp or dalton). A series of biological effects curves (one for each Z-number) is obtained in effectivity versus LET plots. The relationships between induction frequencies of single-strand breaks, or double-strand breaks, or the residual "irrepairable" breaks and LET-values have been evaluated and discussed for a wide spectrum of heavy ions, both for DNA in solution and for DNA in the cell. For radiation induced total breaks in cell DNA, the RBE is less than one, while the RBE for the induction of DSBs can be greater than one in the 100-200 keV/micrometers range. The level of irrepairable strand breaks is highest in this same LET range and may reach 25 percent of the initial break yield. The data presented cover results obtained for helium to uranium particles, covering a particle incident energy range of about 2 to 900 MeV/u with a corresponding LET range of near 16 to 16000 keV/micrometers.  相似文献   

19.
We propose to study the radiation environment on board different flight vehicles: cosmos-type satellites, orbital stations, Space Shuttles and civil (sonic and supersonic) aircraft. These investigations will be carried out with single type of passive detector, namely, nuclear photoemulsions (NPE) with adjustable threshold of particle detection within broad range of linear energy transfer (LET) that is done by means of the technique of selective development of NPE exposed in space.

These investigations will allow one to determine:

• integral spectra of LET of charged particles of cosmic ray (CR) over a wide range from 2.0 to 5×104 MeV/cm in biological tissue;

• differential energy spectra of fast neutrons (1–20 MeV);

• estimation of absorbed and equivalent doses from charged and neutral component CR;

• charge and energy spectra of low energy nuclei (E≤100 MeV) with Z≥2 having in view the extreme hazard radiation to biological objects and microelectronic schemes taken on board inside and outside of these different flight vehicles with exposures from several days to several months.

The investigation of radiation environment on board the airplanes depending on the flight parameters will be conducted using emulsions of different sensitivity without any controlling of threshold sensitivity (Akopova et al., 1996). The proposed detector can be used in the joint experiments on the new International Cosmic Station “Alpha”.  相似文献   


20.
Crews of future high-altitude commercial aircraft may be significantly exposed to atmospheric cosmic radiation from galactic cosmic rays (GCR). To help determine such exposures, the Atmospheric Ionizing Radiation Project, an international collaboration of 15 laboratories, made simultaneous radiation measurements with 14 instruments on a NASA ER-2 high-altitude aircraft. The primary instrument was a sensitive extended-energy multisphere neutron spectrometer, which was also used to make measurements on the ground. Its detector responses were calculated for neutrons and charged hadrons at energies up to 100 GeV using the radiation transport code MCNPX. We have now recalculated the detector responses including the effects of the airplane structure. We are also using new FLUKA calculations of GCR-induced hadron spectra in the atmosphere to correct for spectrometer counts produced by charged hadrons. Neutron spectra are unfolded from the corrected measured count rates using the MAXED code. Results for the measured cosmic-ray neutron spectrum (thermal to >10 GeV), total neutron fluence rate, and neutron dose equivalent and effective dose rates, and their dependence on altitude and geomagnetic cutoff generally agree well with results from recent calculations of GCR-induced neutron spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号