首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 969 毫秒
1.
The United States supported the First GARP Global Experiment (FGGE) by the use of three geostationary satellites: GOES-East, located at 75°W longitude, GOES-West at 135°W longitude, and, through a special cooperative effort by the National Oceanic and Atmospheric Administration, the National Aeronautics and Space Administration, and the European Space Agency, GOES-Indian Ocean at 58°E longitude. During the FGGE Operational Year, the GOES-East coverage was provided, in turn, by GOES-2, SMS-1, and SMS-2. The GOES-West coverage was provided by GOES-3, and GOES-1 served at the GOES-Indian Ocean location. Satellite and instrument performance was generally satisfactory during that period except for the loss of infrared data from the Indian Ocean GOES for an aggregate of 31 days due to intermittent operation of the sensor. From the GOES-East and GOES-West data, the National Environmental Satellite Service produced cloud motion vectors for 0000, 1200, and 1800 GMT daily, numbering in total about 1400 vectors per day. High resolution wind vectors at the rate of somewhat under 3000 daily were derived from the data from all three satellites in the tropical zone bounded by 15°N and 15°S latitude by the University of Wisconsin. In addition to their contributions to the FGGE research data sets, these three satellites provided other real-time benefits and services.  相似文献   

2.
叙述了气象卫星的作用,阐明极轨和静止两种气象卫星的特点、相互分工和共存关系;评述了国外气象卫星发展情况、气象卫星发展趋势和特点;就90年代和下世纪初我国气象卫星的发展提出看法和建议。  相似文献   

3.
China began to develop its meteorological satellite program since 1969. With 50-years' growing, there are 17 Fengyun (FY) meteorological satellites launched successfully. At present, seven of them are in orbit to provide the operational service, including three polar orbiting meteorological satellites and four geostationary meteorological satellites. Since last COSPAR report, no new Fengyun satellite has been launched. The information of the on-orbit FY-2 series, FY-3 series, and FY-4 series has been updated. FY-3D and FY-2H satellites accomplished the commission test and transitioned into operation in 2018. FY-2E satellite completed its service to decommission in 2019. The web-based users and Direct Broadcasting (DB) users keep growing worldwide to require the Fengyun satellite data and products. A new Mobile Application Service has been launched to Fengyun users based on the cloud technology in 2018. In this report, the international and regional co-operations to facilitate the Fengyun user community have been addressed especially. To strengthen the data service in the Belt and Road countries, the Emergency Support Mechanism of Fengyun satellite (FY_ESM) has been established since 2018. Meanwhile, a Recalibrating 30-years' archived Fengyun satellite data project has been founded since 2018. This project targets to generate the Fundamental Climate Data Record (FCDR) as a space agency response to the Global Climate Observation System (GCOS). At last, the future Fengyun program up to 2025 has been introduced as well.   相似文献   

4.
<正> 一、前言国际电信联盟无线电规则把气象卫星业务定义为用于气象目的的地球探测卫星业务。但对静止气象卫星业务来说,气象业务部门希望它不仅要具有气象观测功能,而且要具有收集、传送和分发各种气象信息的功能。因此,静止气象卫星不仅是位于静止轨道上的空间气象观测平台,而且也是收集,传送和分发气象数据的中继站,其有效载荷主要是观测地球大气的各种遥感仪器及收集、传送和分发气象数据的通信系统。它兼有地球探测卫星和通信卫星的  相似文献   

5.
Satellite data are available to meteorological centers around the world in two forms: (1) real-time reception directly from the spacecraft to the users; (2) processed data via the Global Telecommunications System (GTS). Real-time data is broadcast by satellites operated by both the U.S. and the U.S.S.R. From the NOAA series, Automatic Picture Transmission (APT) has been in wide use for 19 years. High Resolution Picture Transmission (HRPT) has been available to users with more sophisticated receiving equipment for the past 10 years. The Meteor satellites have been broadcasting for over 10 years. From the geostationary satellites (GOES), specialized products are broadcast via weather facsimile (WEFAX), and for users with very sophisticated ground systems, real-time geostationary images are available. Derived data, i.e., vertical temperature soundings of the atmosphere, etc., are routinely available on the GTS. The characteristics, utility, current utilization and future developments of these services will be reviewed and discussed.  相似文献   

6.
Chinese meteorological satellite, Fengyun (FY) Satellite, has a polar-orbiting series and a geostationary series. Up to now, 5 polar-orbiting (FY-1A/B/C/D and FY-3A) and 5 geostationary (FY-2A/B/C/D/E) satellites were launched. FY data has been being intensively applied not only to meteorological monitoring and prediction but also to many other fields regarding ecology, environment, disaster, space weather and so and. The FY data sharing system, FengyunCast, is now one of the three components of global meteorological satellite information dissemination system, GEONETCast. The first satellite of the new generation polar-orbiting series, FY-3A, was launched on 27 May, 2008, demonstrating the FY polar-orbiting satellite and its application completed a great leap to realize three-dimensional observations and quantitative application. The first of the next generation geostationary series (FY-4) is planned to launch in 2014.   相似文献   

7.
The ability to observe meteorological events in the polar regions of the Earth from satellite celebrated an anniversary, with the launch of TIROS-I in a pseudo-polar orbit on 1 April 1960. Yet, after 50 years, polar orbiting satellites are still the best view of the polar regions of the Earth. The luxuries of geostationary satellite orbit including rapid scan operations, feature tracking, and atmospheric motion vectors (or cloud drift winds), are enjoyed only by the middle and tropical latitudes or perhaps only cover the deep polar regions in the case of satellite derived winds from polar orbit. The prospect of a solar sailing satellite system in an Artificial Lagrange Orbit (ALO, also known as “pole sitters”) offers the opportunity for polar environmental remote sensing, communications, forecasting and space weather monitoring. While there are other orbital possibilities to achieve this goal, an ALO satellite system offers one of the best analogs to the geostationary satellite system for routine polar latitude observations.  相似文献   

8.
A review of the latest published results concerning the accuracy of satellite derived sea surface temperature (SST) estimation is presented. Two types of platforms are considered : orbiting satellites and geosynchronous satellites and the accuracies that may now be expected from such systems are reported. This review emphasizes the impressive improvement in global mapping of SST obtained from the Advanced Very High Resolution Radiometer (AVHRR) on NOAA's operational polar satellites. Tests of the AVHRR SST's against a high reliability data set consisting of buoys, bathythermographs and research ship reports indicate biases of < 0.1°C and RMS differences of < 0.75°C (McClain [1]). Particular attention is also paid to a method adding along track scanning capability to the present multichannel AVHRR technique. This method is demonstrated owing to the coupling of an orbiting satellite (TIROS-N) and a geosynchronous satellite (METEOSAT). Another type of coupling of two such platforms is also presented in connection with the advent of geostationary satellites equipped with a vertical sounding capability, such as GOES-4.  相似文献   

9.
Recent Progress of Fengyun Meteorology Satellites   总被引:4,自引:1,他引:3       下载免费PDF全文
After nearly 50 years of development, Fengyun (FY) satellite ushered in its best moment. China has become one of the three countries or units in the world (China, USA, and EU) that maintain both polar orbit and geostationary orbit satellites operationally. Up to now, there are 17 Fengyun (FY) satellites that have been launched successfully since 1988. There are two FY polar orbital satellites and four FY geostationary orbit satellites operate in the space to provide a huge amount of the earth observation data to the user communities. The FY satellite data has been applied not only in the meteorological but also in agriculture, hydraulic engineering, environmental, education, scientific research and other fields. More recently, three meteorological satellites have been launched within the past two years. They are FY-4A on 11 December 2016, FY-3D on 15 November 2017 and FY-2H on 5 June 2018. This paper introduces the current status of FY meteorological satellites and data service. The updates of the latest three satellites have been addressed. The characteristics of their payloads on-boarding have been specified in details and the benefit fields have been anticipated separately.   相似文献   

10.
The extraction of information on cloud cover from present-day multispectral satellite images poses a challenge to the remote sensing specialist. When approached one pixel at a time, the derived cloud cover parameters are inherently nonunique. More information is needed than is available in the radiances from each channel of an isolated pixel. The required additional information can be obtained for each scene, however, by analyzing the distribution of pixels in the multi-dimensional space of channel radiances. The cluster patterns in this space yield statistical information that points to the most likely solution for that scene. The geostationary and polar orbiting meteorological satellites all have, at a minimum, a solar reflection channel in the visible spectrum and a thermal infrared channel in the 8–12 micron window. With the information from the cluster patterns and application of the equations of radiative transfer, the measurements in those channels will yield cloud cover fraction, optical thickness, and cloud-top temperature for an assumed microphysical model of the cloud layer. Additional channels, such as the 3.7 micron channel on the AVHRR of the polar orbiting meteorological satellites, will will yield information on the microphysical model—e.g., distinguishing small liquid liquid droplets (typical of low level clouds) from large ice particles (typical of cirrus and the tops of cumulonimbus). New channels to be included in future satellite missions will provide information on cloud height, independent of temperature, and on a particle size and thermodynamic phase, independently of each other. A proposed STS mission using lidar will pave the way for the use of active sensors that will provide more precise information on cloud height and probe the structure of thin cirrus and the top layer of of the thicker cloud.  相似文献   

11.
Fengyun (FY) Satellite has a polar-orbiting series and a geostationary series. Up to now, 7 polar-orbiting (FY-1A/B/C/D and FY-3A/B/C) and 7 geostationary (FY-2A/B/C/D/E/F/G) satellites were launched. FY data has been being intensively applied not only to meteorological monitoring and prediction but also to many other fields regarding ecology, environment, disaster and so on.   相似文献   

12.
The NOAA satellite system comprises the polar-orbiting satellites which provide image data twice a day, and the geostationary satellites, which provide image data every 30 minutes. Data is provided in the visible, near infrared, and middle and far thermal infrared at 1 km resolution from the polar-orbiting satellites and in the visible at 1-km resolution and in the far thermal infrared at 8 km resolution from the geostationary satellites. Applications described include monitoring tectonic lineaments in Alaska, monitoring the Greenland Ice Sheet, mapping geomorphology in the Dakotas and monitoring volcano eruptions. Applications of the Heat Capacity Mapping Mission described include discriminating rock types and indications of mineral deposits. Current research into Land Sciences Applications are discussed and recommendations made for further areas of research.  相似文献   

13.
<正> 一、引言自从1960年发射第一颗气象卫星以来已经25年了。这25年来气象卫星技术及其应用都有了很大发展,在全球天气预报、灾害性天气监视、海洋和水文环境监测、农业和交通中起了越来越重要的作用。气象卫星的功能可以大致概括为: (一)利用遥感探测仪器对卫星下垫面进行探测。探测器主要有两类:一类是成象仪  相似文献   

14.
在获取冬季西北地区一次临近空间气象火箭探测数据后,将火箭探测温度、密度与MSIS00模式和TIMED/SABER卫星数据进行对比,并将火箭探测风场与HWM07模式和MERRA再分析资料进行对比,分析火箭探测温度误差组成,计算各项温度修正量。结果表明:火箭、卫星、MSIS00模式获取的温度和密度随高度整体变化趋势一致;相对于MSIS00模式,火箭和卫星实测数据能够反映出更多的变化细节,且二者在细节上具有较多一致性。火箭实测风场与MERRA的一致性较好,而与HWM07模式差异较大,在平流层中部火箭探测风场明显强于HWM07模式。相对于HWM07模式和MERRA,火箭探测风场能够体现更多细节,在22 km和45 km附近均探测到较强的风切变。在火箭探测温度的各项修正量中,气动加热、温度滞后、支撑结构热传导及测量电流焦耳效应带来的影响较大,该影响整体上随着高度降低而逐渐减小。分析表明,本次气象火箭获取的探测数据是有效可靠的,但在数据处理方法尤其是温度误差修正等方面还需不断迭代完善。   相似文献   

15.
The Gravity Recovery and Climate Experiment (GRACE) satellite mission has been estimating temporal changes in the Earth’s gravitational field since its launch in 2002. While it is not yet fully resolved what the limiting source of error is for GRACE, studies on future missions have shown that temporal aliasing errors due to undersampling signals of interest (such as hydrological variations) and errors in atmospheric, ocean, and tide models will be a limiting source of error for missions taking advantage of improved technologies (flying drag-free with a laser interferometer). This paper explores the option of reducing the effects of temporal aliasing errors by directly estimating low degree and order gravity fields at short time intervals, ultimately resulting in data products with improved spatial resolution. Three potential architectures are considered: a single pair of polar orbiting satellites, two pairs of polar orbiting satellites, and a polar orbiting pair of satellites coupled with a lower inclined pair of satellites. Results show that improvements in spatial resolution are obtained when one estimates a low resolution gravity field every two days for the case of a single pair of satellites, and every day for the case of two polar pairs of satellites. However, the spatial resolution for these cases is still lower than that provided by simply destriping and smoothing the solutions via standard GRACE post-processing techniques. Alternately, estimating daily gravity fields for the case of a polar pair of satellites coupled with a lower inclined pair results in solutions with superior spatial resolution than that offered by simply destriping and smoothing the solutions.  相似文献   

16.
Precision orbit determination on the TOPEX/Poseidon (T/P) altimeter satellite is now being routinely achieved with sub-5cm radial and sub-15 cm total positioning accuracy using state-of-the-art modeling with precision tracking provided by a combination of: (a) global Satellite Laser Ranging (SLR) and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS), or (b) the Global Positioning System (GPS) Constellation which provides pseudo-range and carrier phase observations. The geostationary Tracking and Data Relay Satellite System (TDRSS) satellites are providing the operational tracking and communication support for this mission. The TDRSS Doppler data are of high precision (0.3 mm/s nominal noise levels). Unlike other satellite missions supported operationally by TDRSS, T/P has high quality independent tracking which enables absolute orbit accuracy assessments. In addition, the T/P satellite provides extensive geometry for positioning a satellite at geostationary altitude, and thus the TDRSS-T/P data provides an excellent means for determining the TDRS orbits. Arc lengths of 7 and 10 days with varying degrees of T/P spacecraft attitude complexity are studied. Sub-meter T/P total positioning error is achieved when using the TDRSS range-rate data, with radial orbit errors of 10.6 cm and 15.5 cm RMS for the two arcs studied. Current limitations in the TDRSS precision orbit determination capability include mismodeling of numerous TDRSS satellite-specific dynamic and electronic effects, and in the inadequate treatment of the propagation delay and bending arising from the wet troposphere and ionosphere.  相似文献   

17.
目前中国的"北斗"双星定位系统只能实现二维有源定位,大大限制了该系统的应用。针对这种情况,充分利用现有的"北斗"双星系统资源,提出了使用伪卫星来辅助"北斗"双星系统的方案;推导了此系统的定位原理,并且简单分析了系统的时间同步问题;通过数学推导和仿真分析,研究了伪卫星数目以及布局对系统定位精度的影响,得出了伪卫星布局的相应结论。仿真结果表明,此方案是可行的,采用伪卫星来增强"北斗"双星导航系统,可以提高整个系统的可用性、可靠性、稳定性以及测量精度,为现阶段"北斗"双星系统无源定位的应用提出了一种低成本的改进方法。  相似文献   

18.
基于GNSS的高轨卫星定位技术研究   总被引:3,自引:0,他引:3  
利用全球卫星导航系统(GNSS)进行导航定位具有全球、全天候、实时和高精度的优点,应用于高地球轨道(HEO)卫星的定位,能够提供精确的轨道和姿态确定,并且可以克服目前主要利用地面测控系统对HEO卫星进行定位的设备复杂、投资高等缺点,使得自主导航成为可能.本文对利用GNSS的高轨卫星定位相关技术进行了研究,分析了单一GNSS系统和多个GNSS组合系统的卫星可见性、动态性和几何精度因子(GDOP).通过仿真分析表明,利用组合GNSS系统并通过提高GNSS接收机灵敏度的方法,可以解决GNSS进行HEO卫星定位的相关问题,并能保证HEO卫星定位精度的要求.   相似文献   

19.
The Clouds and Earth Radiant Energy System (CERES) project’s objectives are to measure the reflected solar radiance (shortwave) and Earth-emitted (longwave) radiances and from these measurements to compute the shortwave and longwave radiation fluxes at the top of the atmosphere (TOA) and the surface and radiation divergence within the atmosphere. The fluxes at TOA are to be retrieved to an accuracy of 2%. Improved bidirectional reflectance distribution functions (BRDFs) have been developed to compute the fluxes at TOA from the measured radiances with errors reduced from ERBE by a factor of two or more. Instruments aboard the Terra and Aqua spacecraft provide sampling at four local times. In order to further reduce temporal sampling errors, data are used from the geostationary meteorological satellites to account for changes of scenes between observations by the CERES radiometers.  相似文献   

20.
The Stratospheric Sounding Unit (SSU) is part of the TOVS (TIROS Operational Vertical Sounder) on NOAA operational meteorological satellites. SSU measurements can be validated by comparison with temperature measurements from colocated rocket sondes. Systematic differences are found which vary with rocket station and sonde and are a function of height. However, these measurements are not adequate to define the performance of individual SSUs to a precision which would allow the observations from different SSUs to be combined in the study of diurnal and semidiurnal tides and of long term trends in stratospheric temperature. Instead this is achieved by detailed radiometric and spectroscopic investigation of each individual SSU, both prior to launch and during its operational life. Using the techniques descirbed, it is demonstrated that measurements from different SSUs can be combined with a relative error of less than 0.2K in equivalent brightness temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号