首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 783 毫秒
1.
Coronal mass ejection (CME) occurs when there is an abrupt release of a large amount of solar plasma, and this cloud of plasma released by the Sun has an intrinsic magnetic field. In addition, CMEs often follow solar flares (SF). The CME cloud travels outward from the Sun to the interplanetary medium and eventually hits the Earth’s system. One of the most significant aspects of space weather is the ionospheric response due to SF or CME. The direction of the interplanetary magnetic field, solar wind speed, and the number of particles are relevant parameters of the CME when it hits the Earth’s system. A geomagnetic storm is most geo-efficient when the plasma cloud has an interplanetary magnetic field southward and it is accompanied by an increase in the solar wind speed and particle number density. We investigated the ionospheric response (F-region) in the Brazilian and African sectors during a geomagnetic storm event on September 07–10, 2017, using magnetometer and GPS-TEC networks data. Positive ionospheric disturbances are observed in the VTEC during the disturbed period (September 07–08, 2017) over the Brazilian and African sectors. Also, two latitudinal chains of GPS-TEC stations from the equatorial region to low latitudes in the East and West Brazilian sectors and another chain in the East African sector are used to investigate the storm time behavior of the equatorial ionization anomaly (EIA). We noted that the EIA was disturbed in the American and African sectors during the main phase of the geomagnetic storm. Also, the Brazilian sector was more disturbed than the African sector.  相似文献   

2.
Ionospheric disturbances associated with solar activity may occur via two basic mechanisms. The first is related to the direct impact on the ionosphere of EUV photons from a flare, and the second by prompt electric field penetration into the magnetosphere during geomagnetic storms. In this paper we examine the possibility that these two mechanisms may have an impact at mid latitudes by calculating the total electron content (TEC) from GPS stations in Mexico during several large X-ray flares. We have found that indeed large, complex flares, which are well located, may affect the mid latitude ionosphere. In fact, in the solar events of July 14, 2000 and April 2001 storms, ionospheric disturbances were observed to increase up to 138 and 150 TECu, respectively, due to the influence of EUV photons. Also, during the solar events of July 2000, April 2001, Halloween 2003, January 2005 and December 2006, there are large ionospheric disturbances (up to 393 TECu in the Halloween Storms), due to prompt penetration electric field, associated with CME producing geomagnetic storm.  相似文献   

3.
The responses of the ionospheric F region using GPS–TEC measurements during two moderate geomagnetic storms at equatorial, low-, and mid-latitude regions over the South American and African sectors in May 2010, during the ascending phase of solar cycle 24, are investigated. The first moderate geomagnetic storm studied reached a minimum Dst value of −64 nT at 1500 UT on 02 May 2010 and the second moderate geomagnetic storm reached a minimum Dst value of −85 nT at 1400 UT on 29 May 2010. In this paper, we present vertical total electron content (VTEC) and phase fluctuations (in TECU/min) from Global Positioning System (GPS) observations from the equatorial to mid-latitude regions in the South American and African sectors. Our results obtained during these two moderate geomagnetic storms from both sectors show significant positive ionospheric storms during daytime hours at the equatorial, low-, and mid-latitude regions during the main and recovery phases of the storms. The thermospheric wind circulation change towards the equator is a strong indicator that suggests an important mechanism is responsible for these positive phases at these regions. A pre-storm event that was observed in the African sector from low- to the mid-latitude regions on 01 May 2010 was absent in the South American sector. This study also showed that there was no generation or suppression of ionospheric irregularities by storm events. Therefore, knowledge about the suppression and generation of ionospheric irregularities during moderate geomagnetic storms is still unclear.  相似文献   

4.
The geomagnetic storm is a complex process of solar wind/magnetospheric origin. The variability of the ionospheric parameters increases substantially during geomagnetic storms initiated by solar disturbances. Various features of geomagnetic storm act at various altitudes in the ionosphere and neutral atmosphere. The paper deals with variability of the electron density of the ionospheric bottomside F region at every 10 km of altitude during intense geomagnetic storms with attention paid mainly to the distribution of the F1 region daytime ionisation. We have analysed all available electron density profiles from some European middle latitude stations (Chilton, Pruhonice, Ebro, Arenosillo, Athens) for 36 events that occurred in different seasons and under different levels of solar activity (1995–2003). Selected events consist of both depletion and increase of the F2 region electron density. For European higher middle and middle latitude the F1 region response to geomagnetic storm was found to be negative (decrease of electron density) independent on the storm effect on the F2 region. For lower middle latitude the F1 response is weaker and less regular. Results of the analysis also show that the maximum of the storm effect may sometimes occur below the height of the maximum of electron density (NmF2).  相似文献   

5.
By using the data of GNSS (Global Navigation Satellite System) observation from Crustal Movement Observation Network of China (CMONOC), ionospheric electron density (IED) distributions reconstructed by using computerized ionospheric tomography (CIT) technique are used to investigate the ionospheric storm effects over Wuhan region during 17 March and 22 June 2015 geomagnetic storm periods. F-region critical frequency (foF2) at Wuhan ionosonde station shows an obvious decrease during recovery phase of the St. Patrick’s Day geomagnetic storm. Moreover, tomographic results present that the decrease in electron density begins at 12:00 UT on 17 March during the storm main phase. Also, foF2 shows a long-lasting negative storm effect during the recovery phase of the 22 June 2015 geomagnetic storm. Electron density chromatography presents the evident decrease during the storm day in accordance with the ionosonde observation. These ionospheric negative storm effects are probably associated with changes of chemical composition, PPEF and DDEF from high latitudes.  相似文献   

6.
In this paper, the peculiarities of ionospheric response to geomagnetic disturbances observed at the decay and minimum of solar activity (SA) in the period 2004–2007 are investigated with respect to different geomagnetic conditions. Data from ionospheric stations and results of total electron content (TEC) measurements made at the network of GPS ground-based receivers located within the latitude–longitude sector (20–70°N, 90–160°Е) are used in this study. Three groups of anomalous ionospheric response to geomagnetic disturbances have been observed during low solar activity. At daytime, the large-scale traveling ionospheric disturbances (LSTIDs) could generally be related to the main phase of magnetic storm. Quasi-two-days wavelike disturbances (WLDs) have been also observed in the main phase independent of the geomagnetic storm intensity. Sharp electron density oscillations of short duration (OSD) occurred in the response to the onset of both main and recovery phases of the magnetic storm in the daytime at middle latitudes. A numerical model for ionosphere–plasmasphere coupling was used to interpret the occurrence of LS TIDs. Results showed that the LSTIDs might be associated with the unexpected lifting of F2 layer to the region with the lower recombination rate by reinforced meridional winds that produces the increase of the electron density in the F2 layer maximum.  相似文献   

7.
The present study reveals the features of ionospheric parameters variations during the geomagnetic storm of September 7–8, 2017. In particular, parameters of vertical (foF2, foEs) and oblique ionospheric sounding (MOF, modes), absorption level, Total Electron Content (TEC) and particle fluxes at high altitudes were under analysis. The storm was characterized by two Dst-index mimima and can be considered as a sequence of two storms: first - with Dstmin?=??142?nT at 02 UT on September 8th and second - with Dstmin?=??122?nT and at 15 UT on September 8th. It was found that these two storms had different impacts on the ionosphere and HF propagation at mid- and high-latitudes of Northern Hemisphere. The signals of vertical and oblique ionospheric sounding were present in all ionograms before the first storm. Further, at the maximum of the first storm these signals were totally absorbed. Then, before the second storm and during its maximum the signals were detected again in the ionograms due to the low absorption. GOES satellite data showed the significant burst of electrons and protons only during the first storm and small particle fluxes - during the second storm. This feature was also confirmed with GPS data: TEC increased during the first storm and decreased during the second storm.  相似文献   

8.
用银河宇宙线判定几个引起特大磁暴CME的运动方向   总被引:1,自引:0,他引:1  
利用位于南北极尖区位置的McMurdo和Thule台站的宇宙线强度的观测数据,分析了几个引起特大磁暴CME的来向.分析结果表明,所选的与4个特大磁暴相关的CME基本是朝正对磁层顶的方向运动并与磁层作用的.通过对引起第23周两个特大磁暴的CME特征分析对照,发现CME的来向是影响磁暴强弱的一个因素.同样条件下,运动方向偏向地球一侧的CME引起的磁暴比正对地球的CME引起的磁暴要弱。  相似文献   

9.
This paper presents traveling ionospheric disturbances (TIDs) observations from GPS measurements over the South African region during the geomagnetically disturbed period of 29–31 October 2003. Two receiver arrays, which were along two distinct longitudinal sectors of about 18°-20° and 27°-28° were used in order to investigate the amplitude, periods and virtual propagation characteristics of the storm induced ionospheric disturbances. The study revealed a large sudden TEC increase on 28 October 2003, the day before the first of the two major storms studied here, that was recorded simultaneously by all the receivers used. This pre-storm enhancement was linked to an X-class solar flare, auroral/magnetospheric activities and vertical plasma drift, based on the behaviour of the geomagnetic storm and auroral indices as well as strong equatorial electrojet. Diurnal trends of the TEC and foF2 measurements revealed that the geomagnetic storm caused a negative ionospheric storm; these parameters were depleted between 29 and 31 October 2003. Large scale traveling ionospheric disturbances were observed on the days of the geomagnetic storms (29 and 31 October 2003), using line-of-sight vertical TEC (vTEC) measurements from individual satellites. Amplitude and dominant periods of these structures varied between 0.08–2.16 TECU, and 1.07–2.13 h respectively. The wave structures were observed to propagate towards the equator with velocities between 587.04 and 1635.09 m/s.  相似文献   

10.
全球电离层对2000年4月6-7日磁暴事件的响应   总被引:1,自引:0,他引:1  
利用分布于全球的电离层台站的测高仪观测数据,对扰动期间,foF2值与其宁静期间参考值进行比较,研究了2000年4月6—7日磁暴期间全球不同区域电离层的响应形态,并通过对比磁扰期间NmF2的变化与由MSISR90经验模式估算的中性大气浓度比(no/nN2)的变化,探讨了本次事件期间的电离层暴扰动机制.结果表明,在磁暴主相和恢复相早期,出现了全球性的电离层F2层负相暴效应.最大负相暴效应出现在磁暴恢复相早期,即电离层暴恢复相开始时间滞后于磁暴恢复相开始时间.在磁暴恢复相后期,一些台站出现正相扰动.研究结果表明,本次事件期间的电离层暴主要是由磁暴活动而诱发的热层暴环流引起的.  相似文献   

11.
利用武汉电离层观象台研制的GPS TEC的现报方法及现报系统,对东亚地区GPS台网的观测数据进行处理分析,特别对2000年7月14-18日和2003年10月28日至11月1日两次特大磁暴期间的数据进行了对比考察,文中分析了两次磁暴间的电离层响应,得到对应不同磁暴时段电离层TEC的不同变化情况,着重揭示了TEC赤道异常峰的压缩和移动以及赤道异常随时间的压缩—反弹—恢复的过程,并结合高纬电离层的部分响应机制进行了说明,结果显示,两次磁暴期的电离层响应表现出了各自不同的特点,从而反映出因季节变化引起的高纬电离层暴时能量注入的不同而造成的全球性电离层扰动的不同形态,由此看出,磁暴期间电离层TEC的变化直接与太阳扰动发生的时间及其对高纬电离层的耦合有关,若短时期内连续发生多次磁暴,则电离层反应更加复杂,不能简单地当做单一磁暴叠加处理。  相似文献   

12.
The bulk association between ionospheric storms and geomagnetic storms has been studied. Hemispheric features of seasonal variation of ionospheric storms in the mid-latitude were also investigated. 188 intense geomagnetic storms (Dst  100 nT) that occurred during solar cycles 22 and 23 were considered, of which 143 were observed to be identified with an ionospheric storm. Individual ionospheric storms were identified as maximum deviations of the F2 layer peak electron density from quiet time values. Only ionospheric storms that could clearly be associated with the peak of a geomagnetic storm were considered. Data from two mid-latitude ionosonde stations; one in the northern hemisphere (i.e. Moscow) and the other in the southern hemisphere (Grahamstown) were used to study ionospheric conditions at the time of the individual geomagnetic storms. Results show hemispheric and latitudinal differences in the intensity and nature of ionospheric storms association with different types of geomagnetic storms. These results are significant for our present understanding of the mechanisms which drive the changes in electron density during different types of ionospheric storms.  相似文献   

13.
Responses of low-latitude ionospheric critical frequency of F2 layer to geomagnetic activities in different seasons and under different levels of solar activity are investigated by analyzing the ionospheric foF2 data from DPS-4 Digisonde in Hainan Observatory during 2002–2005. The results are as follows: (1) the response of foF2 to geomagnetic activity in Hainan shows obvious diurnal variation except for the summer in low solar activity period. Generally, geomagnetic activity will cause foF2 to increase at daytime and decrease at nighttime. The intensity of response of foF2 is stronger at nighttime than that at daytime; (2) seasonal dependence of the response of foF2 to geomagnetic activity is very obvious. The negative ionospheric storm effect is the strongest in summer and the positive ionospheric storm effect is the strongest in winter; (3) the solar cycle has important effect on the response of foF2 to geomagnetic activity in Hainan. In high solar activity period, the diurnal variation of the response of foF2 is very pronounced in each season, and the strong ionospheric response can last several days. In low solar activity period, ionospheric response has very pronounced diurnal variation in winter only; (4) the local time of geomagnetic activities occurring also has important effect on the responses of foF2 in Hainan. Generally, geomagnetic activities occurred at nighttime can cause stronger and longer responses of foF2 in Hainan.  相似文献   

14.
We have studied the time delay of ionospheric storms to geomagnetic storms at a low latitude station Taoyuan (25.02°N, 121.21°E), Taiwan using the Dst and TEC data during 126 geomagnetic storms from the year 2002 to 2014. In addition to the known local time dependence of the time delay, the statistics show that the time delay has significant seasonal characteristics, which can be explained within the framework of the seasonal characteristics of the ionospheric TEC. The data also show that there is no correlation between the time delay and the intensity of magnetic storms. As for the solar activity dependence of the time delay, the results show that there is no relationship between the time delay of positive storms and the solar activity, whereas the time delay of negative storms has weakly negative dependence on the solar activity, with correlation coefficient −0.41. Especially, there are two kinds of extreme events: pre-storm response events and long-time delay events. All of the pre-storm response events occurred during 15–20 LT, manifesting the Equator Ionospheric Anomaly (EIA) feature at Taoyuan. Moreover, the common features of the pre-storm response events suggest the storm sudden commencement (SSC) and weak geomagnetic disturbance before the main phase onset (MPO) of magnetic storms are two main possible causes of the pre-storm response events. By analyzing the geomagnetic indices during the events with long-time delay, we infer that this kind of events may not be caused by magnetic storms, and they might belong to ionospheric Q-disturbances.  相似文献   

15.
This study examines the occurrences rate of geomagnetic storms during the solar cycles (SCs) 20–24. It also investigates the solar sources at SCs 23 and 24. The Disturbed storm time (Dst) and Sunspot Number (SSN) data were used in the study. The study establishes that the magnitude of the rate of occurrences of geomagnetic storms is higher (lower) at the descending phases (minimum phases) of solar cycle. It as well reveals that severe and extreme geomagnetic storms (Dst < -250 nT) seldom occur at low solar activity but at very high solar activity and are mostly associated with coronal mass ejections (CMEs) when occurred. Storms caused by CME + CH-HSSW are more prominent during the descending phase than any other phase of the solar cycle. Solar minimum features more CH-HSSW- associated storms than any other phase. It was also revealed that all high intensity geomagnetic storms (strong, severe and extreme) are mostly associated with CMEs. However, CH-HSSW can occasionally generate strong storms during solar minimum. The results have proven that CMEs are the leading cause of geomagnetic storms at the ascending, maximum and the descending phases of the cycles 23 and 24 followed by CME + CH-HSSW. The results from this study indicate that the rate of occurrence of geomagnetic storms could be predicted in SC phases.  相似文献   

16.
基于IGS提供的TEC数据, 研究了2003年10月大磁暴期间的暴时密度增强(Storm Enhanced Density, SED)现象; 利用GPS观测数据, 计算出ROTI (Standard deviations of ROT)指数, 分析了SED边界附近电离层小尺度不均匀体结构的时间和空间演变. 研究表明, 在磁暴主相期间SED边界附近不均匀体随着磁暴的发展逐渐增多; 在主相的中后期不均匀体的分布密集度达到最大; 在恢复相期间, 不均匀体分布很少; 随着磁暴的发展, 不均匀体开始主要集中在40~45oN范围内, 随后向高纬漂移, 主要集中在45~55oN范围内.   相似文献   

17.
2009年7月22日日全食期间电离层参量的变化   总被引:3,自引:2,他引:1  
利用多个电离层垂测站的数据和IGS-TEC数据资料, 结合日地空间环境指数, 分析了2009年7月22日日全食期间中国地区电离层参量(反射回波最低频率fmin及f0F2和TEC)的变化特征. 结果表明, 日食发生后fmin迅速降低, 日食结束后fmin迅速恢复到正常水平; 在食甚时刻附近, f0F2和TEC出现明显的降低, 显示了明显的光食效应. 日食结束后5~6 h, f0F2和TEC出现不同程度的正扰动, 在驼峰区更明显; 日食结束后9~10 h, f0F2和TEC出现较显著的负扰动. 由于此次日食发生时伴随着中等强度的磁暴和低纬电场穿透等空间天气事件, 给此次日食电离层效应的深入分析带来很大困难.   相似文献   

18.
地磁扰动期间日本Kokubunji站电离层的扰动特征分析   总被引:4,自引:4,他引:0  
利用日本Kokubunji站(139.5°E,35.5°N)1959年1月到2004年12月共46年的F2层临界频率foF2参数,统计分析了Kokubunji站电离层F2层峰值电子浓度NmF2随地磁活动、太阳活动、季节和地方时变化的形态特征.结果表明,总体来看,磁暴期间Kokubunji站电离层响应以正暴为主,其中在太阳高年夏季为负暴,冬季为正暴,春秋季以负暴为主但幅度较小;在太阳低年夏季以正暴为主,冬季为正暴,春秋季以正暴为主.NmF2扰动与ap指数在夏季太阳高年负相关,在冬季无论太阳高年低年均为正相关,春秋季中4月和9月在太阳高年类似夏季,3月和10月在太阳低年类似冬季.电离层最大负相扰动对最大地磁活动的延迟时间约为12~15 h;正相扰动的延迟时间则分别为3 h和10 h.地磁活跃期间地方时黄昏后到午夜前倾向于正相扰动,清晨倾向于负相扰动.   相似文献   

19.
Dst是一个表征磁暴强度的空间天气指数. 通过统计1957-2008年 发生的中等磁暴(-100<Dst≤ -50nT)和强磁暴(Dst ≤ -100nT)在太阳活动周上升年、极大年、下降年和极小年的时间分布情 况, 分析其随季节变化的统计特性, 进而讨论了引起磁暴的原因. 结果表明, 对于同一太阳活动周, 极大年地磁暴发生次数远大于极小年地磁暴的发生次数, 这与太阳黑子数的变化趋势是一致的; 通常太阳活动周强磁暴出现双峰结构, 而第23周中等磁暴出现双峰结构, 强磁暴则出现三峰结构, 这可能与1999 年强 磁暴发生次数异常少, 使1998年凸显出来的现象有关; 磁暴主要发生在分季, 随着Dst指数的增加, 磁暴发生次数明显增加.   相似文献   

20.
Observations of ionospheric vertical total electron content (vTEC) from European ground-based Global Navigation Satellite Systems (GNSS) receivers during the period January 2008–January 2010 are used to investigate, for the first time, vTEC sensitivity to weak geomagnetic disturbances under extreme solar minimum conditions. This study shows a significant number of events for the period in question, all of which exhibited some form of exceptionally large values of vTEC during small-magnitude geomagnetic disturbances. To illustrate our point on the importance of vTEC enhancements during the extreme solar minimum and its relevance for the current GNSS and future Galileo applications, we present in this paper the results associated with two significant events that both occurred in equinoctial months. The 10–12 October 2009 event of anomalous TEC enhancement at two distant mid-latitude locations HERS (0.3 E; 50.9 N) and NICO (33.4 E, 35.1 N) is discussed in the context of strong vTEC variations during the well established ionospheric storm on 11 October 2008. We conclude with a short summary of the new findings and their consequences on ionospheric monitoring and modelling for operational communication and navigation systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号