首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 687 毫秒
1.
本文在文献[9]的基础上,通过增加二个时刻的模型计算,给出了更完整的1983年2月3日2B级耀斑脉冲相色球半经验模型,从而进一步描述了脉冲相色球物理过程,并对耀斑动力学参量及能量过程作了初步讨论。   相似文献   

2.
本文计算了非热电子束流通过库仑碰撞和反向电流过程在均匀截面的耀斑环中的能量沉积,讨论了非热电子束流对耀斑软X射线等离子体的加热和耀斑非热模型的能量收支平衡问题。   相似文献   

3.
本文利用SMM卫星的X射线资料,以及云南天文台的光学观测资料,分析了1980年7月14日的3B级耀斑.求得X射线耀斑能谱随时间的变化;计算了耀斑爆发时加速的电子总数和电子的平均能量;并测量和比较了Hα耀斑和X射线爆源的位置.结果表明:(1)硬X射线爆由高能非热电子束引起;(2)软X射线爆基本上由高温等离子体的热韧致辐射所产生,但必须考虑非热电子轫致辐射的贡献;(3)确定X射线爆源的高度,有赖于耀斑模型及活动区磁场位形.所得结果支持耀斑过程的新浮磁流模型(EMF模型).  相似文献   

4.
本文对1980年11月5日22点25分开始的1B/M1-M4的Hα耀斑进行了图象处理,绘制了等光度图;与硬、软X射线象,微波象进行了比较.结果表明:1.耀斑的第一次极大,高能电子没有穿透到色球.Hα耀斑主要是由T=107—108K(产生软硬X射线的热区)等离子体向下传导到色球而形成.2.Hα耀斑的第二次极大,是由高能电子轰击色球而形成,Hα耀斑滞后数秒(小于5秒).3.耀斑闪光相,Hα面积与Hα强度同步增长.4.从耀斑前后的横向磁场变化(Hα短纤维的变化),估计磁能释放~1031尔格.   相似文献   

5.
太阳耀斑硬X射线能谱演变特征   总被引:1,自引:1,他引:0  
太阳硬X射线是耀斑高能电子束流与太阳大气相互作用产生的韧致辐射,根据简单的太阳耀斑环物理模型,假定具有流量与能谱同步变化的高能电子束流从耀斑环顶部注入,计算了硬X射线辐射在不同的靶物质密度区的能谱演变特征。结果表明:硬X射线辐射在低大气密度靶区呈现软一硬一硬的能谱演变特征,在高密度靶区硬X射线能谱则具有软一硬一软的变化特征。高能电子束流持续时间影响谱型转变区域在耀斑环中的高度。   相似文献   

6.
太阳耀斑硬X射线高能时延和辐射展宽   总被引:2,自引:2,他引:0       下载免费PDF全文
本文从耀斑高能电子束流与太阳大气相互作用产生硬X射线辐射的基本事实出发,根据观测资料,提出了一个流量与能谱同步变化的注入源函数模型,研究太阳大气(靶物质)密度对耀斑硬X射线时间响应.理论计算与观测事实基本一致.主要计算结果如下:高能时延与辐射展宽是耀斑硬X射线轫致辐射时间特征的二种表现,硬X射线发射区的太阳大气密度越低,高能时延与辐射展宽效应越明显,二者之间存在显著的相关性.   相似文献   

7.
众眼看宇宙     
王琴 《太空探索》2012,(4):62-63
2012年伊始,NASA就将这幅高清的X级太阳耀斑照片赠予世人欣赏。太阳耀斑(又称色球爆发)是太阳表面突然释放能量,喷射出高能带电粒子而形成的壮观场面,其寿命仅有几分钟至几个小时。  相似文献   

8.
本文在统一模型的考虑下,对1983年2月3日太阳3B级Hα双带耀斑和共生的爆发事件进行了综合分析研究.探讨了其中主要的共生辐射的物理过程和内在联系,并讨论了Ⅲ型、Ⅳ型和微波射电爆发源的非热电子束流对产生Hα双带耀斑和硬X射线爆发所起的重要作用.  相似文献   

9.
1986年2月太阳的高活动I活动区4711的演化和特征   总被引:1,自引:1,他引:0  
本文使用太阳黑子、磁场、Hα色球、10.7cm射电及软X射线流量等观测资料,对太阳活动谷期的高活动区4711(SESC编号)从光球、色球和日冕三个方面做了综述.指出该活动区演化过程的特征是:(1)黑子群在主要发展阶段呈一个紧密的结构复杂的强磁区;(2)两次大的太阳爆发均发生在黑子群面积衰减阶段的初期;(3)黑子群的转动可能是活动区日冕加热和耀斑活动的主要供能机制;(4)色球暗条的频繁活动是爆发的先兆;(5) 10.7cm射电辐射和软X射线辐射的逐日流量有彼此不重合的双峰.   相似文献   

10.
本文根据1986年1月-1992年12月期间,130个1-8?的X级别的X射线事件与相应背景发射水平所作的分析,发现90%以上的X级X射线事件,都发生在X射线背景发射≥C1(10-6W/m2)水平上,这一统计规律,可从耀斑加速的非热电子对色球等离于体的加热得到合理的解释.   相似文献   

11.
Recent advances in the study of energy release in Flares are reviewed. Progress has been made in modelling coronal X-ray emission and the chromospheric response to energy imput. These advances are based on theoretical studies and on the comparison of complementary data obtained from spacecraft and ground-based observatories. We first review the modelling of the coronal flare derived from radio, X-ray and XUV observations. Then we summarize results on the chromospheric response to various energy imput. Observations of X-ray continuum intensity and polarization, transition zone lines and chromospheric lines do not show evidence of particle trapping by a turbulent front. Although they might be in agreement with trapping and partial precipitation. White light flares appear to result from energy deposited above the photosphere. They are probably due to electron bombardment. The implication of these results on the primary energy release process are discussed and prospects for new research are presented.  相似文献   

12.
Recent advances have enabled simultaneous Hα and X-ray observations with substantially improved spatial, spectral, and temporal resolution. In this paper we study two events observed as part of a coordinated observing program between the Solar Maximum Mission and Sacramento Peak Observatory: the flares of 1456 UT, 7 May 1980 and 1522 UT, 24 June 1980. Using recently-developed physical models of static flare chromospheres, and corresponding theoretical Hα line profiles, we can distinguish effects of intense nonthermal electron heating from those of high conduction and pressure from the overlying flare corona. Both flares show the signature of intense chromospheric heating by fast electrons, temporally correlated with X-ray light curves at E > 27keV, and spatially associated with X-ray emission sites at E >62; 16 keV. Interpreting the Hα line profile observations using the theoretical Hα line profiles, we infer values of the thick-target input power contained in nonthermal electrons that are observationally indistinguishable (within a factor of 2–3) from those inferred from the X-ray data. Although these events are small, the energy flux values are large: of order 1011 ergs cm?2 s?1 above 20 keV.  相似文献   

13.
It is believed that a large fraction of the total energy released in a solar flare goes initially into acceleratedelectrons. These electrons generate the observed hard X-ray bremsstrahlung as they lose most of their energy by coulomb collisions in the lower corona and chromosphere. Results from the Solar Maximum Mission showed that there may be even more energy in accelerated electrons with energies above 25 keV than in the soft X-ray emitting thermal plasma. If this is the case, it is difficult to understand why the Neupert Effect — the empirical result that for many flares the time integral of the hard X-ray emission closely matches the temporal variation of the soft X-ray emission — is not more clearly observed in many flares. From recent studies, it appears that the fraction of the released energy going into accelerated electrons is lower, on average, for smaller flares than for larger flares. Also, from relative timing differences, about 25% of all flares are inconsistent with the Neupert Effect. The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) is uniquely capable of investigating the Neupert Effec since it covers soft X-rays down to 3 keV (when both attenuators are out of the field of view) and hard X-rays with keV energy resolution, arcsecond-class angular resolution, and sub-second time resolution. When combined with the anticipated observations from the Soft X-ray Imager on the next GOES satellite, these observations will provide us with the ability to track the Neupert Effect in space and time and learn more about the relation between plasma heating and particle acceleration. The early results from RHESSI show that the electron spectrum extends down to as low as 10 keV in many flares, thus increasing the total energy estimates of the accelerated electrons by an order of magnitude or more compared with the SMM values. This combined with the possible effects of filling factors smaller than unity for the soft X-ray plasma suggest that there is significantly more energy in nonthermal electrons than in the soft X-ray emitting plasma in many flares.  相似文献   

14.
During the impulsive phase of solar flares, both hard X-ray (HXR) and optical emissions exhibit fast temporal fluctuations detectable down to sub-second scales. This is usually ascribed to the propagation of beams of accelerated particles and to the dissipation of their energy in lower layers of the solar atmosphere. Although it is rather difficult to prove a temporal correlation between HXR and optical intensity variations, we discuss here some previous results and recent attempts. Namely in coordination with RHESSI observations, several ground-based observatories started to detect fast optical variations in the H line. In addition to this, we also mention a possibility of using some other diagnostically important lines. The proper interpretation of coordinated HXR and optical observations further requires robust tools for radiation-hydrodynamical (RHD) forward modeling. We briefly describe a new ‘hybrid’ code which consists of RHD part and particle-simulation part. Short-duration heating due to beam pulses is modeled which allows us to predict temporal fluctuations of HXR and selected optical and UV lines formed in chromospheric layers and in the transition region. Particularly the line asymmetries originating in a highly dynamical lower atmosphere of the flare can be used to diagnose the response of these layers to particle beams.  相似文献   

15.
The comparative study of radiation in the different spectral ranges, including X-ray and radio observations, can establish constraints for the electron acceleration/injection mechanisms. This paper will focus on the activity prior and during the impulsive phase of solar flares. Observations give evidence for electron acceleration prior the impulsive phase. The association between type III groups and hard X-ray bursts becomes closer with increasing starting frequency of the former observed during the impulsive phase. It is shown that pure type III burst groups, when they are X-ray associated, do not correspond to an intense X-ray emission. At the opposite, the type III/V events can be associated with strong X-ray emission. Radioheliograph observations bring constraints on the geometry of the injection/acceleration site.  相似文献   

16.
A popular scenario for electron acceleration in solar flares is transit-time damping of low-frequency MHD waves excited by reconnection and its outflows. The scenario requires several processes in sequence to yield energetic electrons of the observed large number. Until now there was very little evidence for this scenario, as it is even not clear where the flare energy is released. RHESSI measurements of bremsstrahlung by non-thermal flare electrons yield energy estimates as well as the position where the energy is deposited. Thus quantitative measurements can be put into the frame of the global magnetic field configuration as seen in coronal EUV line observations. We present RHESSI observations combined with TRACE data that suggest primary energy inputs mostly into electron acceleration and to a minor fraction into coronal heating and primary motion. The more sensitive and lower energy X-ray observations by RHESSI have found also small events (C class) at the time of the acceleration of electron beams exciting meter wave Type III bursts. However, not all RHESSI flares involve Type III radio emissions. The association of other decimeter radio emissions, such as narrowband spikes and pulsations, with X-rays is summarized in view of electron acceleration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号