首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Observations of hard X-ray (HXR)/γ-ray continuum and γ-ray lines produced by energetic electrons and ions, respectively, colliding with the solar atmosphere, have shown that large solar flares can accelerate ions up to many GeV and electrons up to hundreds of MeV. Solar energetic particles (SEPs) are observed by spacecraft near 1 AU and by ground-based instrumentation to extend up to similar energies as in large SEP events, but it appears that a different acceleration process, one associated with fast coronal mass ejections is responsible. Much weaker SEP events are observed that are generally rich in electrons, 3He, and heavy elements. The energetic particles in these events appear to be similar to those accelerated in flares. The Ramaty high energy solar spectroscopic imager (RHESSI) mission provides high-resolution spectroscopy and imaging of flare HXRs and γ-rays. Such observations can provide information on the location, energy spectra, and composition of the flare accelerated energetic particles at the Sun. Here, preliminary comparisons of the RHESSI observations with observations of both energetic electron and ion near 1 AU are reviewed, and the implications for the particle acceleration and escape processes are discussed.  相似文献   

2.
Hard X-ray observations provide the most direct diagnostic we have of the suprathermal electrons and the hottest thermal plasma present in solar flares. The Ramaty High Energy Solar Spectroscopic Imager (RHESSI) is obtaining the most comprehensive observations of individual solar flares ever available in hard X-rays. For the first time, high-resolution spectra are available for a large number of flares that accurately display the spectral shape and its evolution and, in many cases, allow us to identify the transition from the bremsstrahlung X-rays produced by suprathermal electrons to the bremsstrahlung at lower energies emitted by thermal plasma. Also, for the first time, images can be produced in arbitrary energy bands above 3–4 keV, and spectra of distinct imaged components can be obtained.I review what we have learned from RHESSI observations about flare suprathermal electron distributions and their evolution. Next, I present computations of the energy deposited by these suprathermal electrons in individual flares and compare this with the energy contained in the hot thermal plasma. I point out unsolved problems in deducing both suprathermal electron distributions and the energy content of the thermal plasma, and discuss possible solutions. Finally, I present evidence that electron acceleration is associated with magnetic reconnection in the corona.  相似文献   

3.
Whereas hard X-rays, microwaves and gamma-rays trace flare accelerated electrons and ions interacting in the lowcorona and the chromosphere, imaging and spectral radio observations in the decimetric-dekametric domain provide signatures of non thermal electrons in the middle and upper corona. These latter radio observations, combined with X-ray, EUV and optical measurements, contain unique information on the various circumstances of electron acceleration whether they are associated with flares or not. In this paper we outline the results of multiwavelength studies which provide: (i) information on the magnetic structure at various spatial scales into which flare accelerated electrons are injected/accelerated and (ii) evidence for various sites of electron acceleration outside flares which are located in the corona at altitudes ranging typically from 0.1 to 1 R above the photosphere.  相似文献   

4.
The GOES M8.2 flare on 10 April 2002 at 1230 UT was observed at X-ray wavelengths by RHESSI and atmetric/decimetric wavelengths by the Nançay Radioheliograph (NRH). We discuss the temporal evolution of X-ray sources together with the evolution of the radio emission sites observed at different coronal heights by the NRH. While the first strong HXR peak at energies above 50 keV arises from energy release in compact magnetic structures (with spatial scales of a few 104 km) and is not associated with strong radio emission, the second one leads to energy release in magnetic structures with scales larger than 105 km and is associated with intense decimetric/metric and dekametric emissions. We discuss these observations in the context of the acceleration sites of energetic electrons interacting at the Sun and of escaping ones.  相似文献   

5.
Using the Clark Lake Radioheliograph data we present direct evidence that type III electron streams propagate in dense coronal streamers. We also present imaging observations of meter-decameter microbursts, which appear to be similar to those observed in hard X-rays. At meter-decameter wavelengths, these microbursts appear to be due to plasma radiation. From observations made with ISSE-3, we discuss the characteristics of hectometer and kilometer wavelength radio bursts. In particular, we show that from studies of type III storms that the exciter electrons propagate along spiral structures, where the density is enhanced and that there is an acceleration of the solar wind. We discuss type II bursts at kilometer wavelengths, compare them with meter type II bursts and discuss their association with interplanetary shocks. We show that the interaction between type III electron streams and shocks at kilometer wavelengths can provide information on the interplanetary shock geometry. Finally, we discuss the possibility that some shock associated (SA) events may be emissions caused by electrons accelerated lower in the atmosphere rather than high in the corona in type II shocks.Recent advances in solar research have resulted from new work on plasma radiation theory, new observations of active regions and flares across the electromagnetic spectrum and the availability of spacecraft in situ measurements of solar ejecta. In this paper, we review some results obtained with the Clark Lake multifrequency radioheliograph at meter-decameter wavelengths and from satellite multifrequency directive observations at hectometer and kilometer wavelengths. We present evidence that type III electrons propagate in dense coronal streamers, and that frequently observed microbursts (presumably of type III) at meter-decameter wavelengths are due to plasma radiation. We discuss observations of hectometer and kilometer type III radio storms which reveal information about active region structures, interplanetary magnetic field configuration, and solar wind acceleration. We also discuss kilometer type II bursts, interactions between type III electrons and interplanetary shocks, and present some new results on shock associated (SA) events.  相似文献   

6.
The maximum entropy formalism and dimensional analysis are used to derive a power-law spectrum of accelerated electrons in impulsive solar flares, where the particles can contain a significant fraction of the total flare energy. Entropy considerations are used to derive a power-law spectrum for a particle distribution characterised by its order of magnitude of energy. The derivation extends an earlier one-dimensional argument to the case of an isotropic three-dimensional particle distribution. Dimensional arguments employ the idea that the spectrum should reflect a balance between the processes of energy input into the corona and energy dissipation in solar flares. The governing parameters are suggested on theoretical grounds and shown to be consistent with solar flare observations. The flare electron flux, differential in the non-relativistic electron kinetic energy E, is predicted to scale as E-3. This scaling is in agreement with RHESSI measurements of the hard X-ray flux that is generated by deka-keV electrons, accelerated in intense solar flares.  相似文献   

7.
It is believed that a large fraction of the total energy released in a solar flare goes initially into acceleratedelectrons. These electrons generate the observed hard X-ray bremsstrahlung as they lose most of their energy by coulomb collisions in the lower corona and chromosphere. Results from the Solar Maximum Mission showed that there may be even more energy in accelerated electrons with energies above 25 keV than in the soft X-ray emitting thermal plasma. If this is the case, it is difficult to understand why the Neupert Effect — the empirical result that for many flares the time integral of the hard X-ray emission closely matches the temporal variation of the soft X-ray emission — is not more clearly observed in many flares. From recent studies, it appears that the fraction of the released energy going into accelerated electrons is lower, on average, for smaller flares than for larger flares. Also, from relative timing differences, about 25% of all flares are inconsistent with the Neupert Effect. The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) is uniquely capable of investigating the Neupert Effec since it covers soft X-rays down to 3 keV (when both attenuators are out of the field of view) and hard X-rays with keV energy resolution, arcsecond-class angular resolution, and sub-second time resolution. When combined with the anticipated observations from the Soft X-ray Imager on the next GOES satellite, these observations will provide us with the ability to track the Neupert Effect in space and time and learn more about the relation between plasma heating and particle acceleration. The early results from RHESSI show that the electron spectrum extends down to as low as 10 keV in many flares, thus increasing the total energy estimates of the accelerated electrons by an order of magnitude or more compared with the SMM values. This combined with the possible effects of filling factors smaller than unity for the soft X-ray plasma suggest that there is significantly more energy in nonthermal electrons than in the soft X-ray emitting plasma in many flares.  相似文献   

8.
There is increasing evidence suggesting that coronal acceleration supplies at least part of the particles observed during solar energetic particle events, yet coronal processes tend to be mostly disregarded in these studies. This is often due to the fact that the coronal restructuring in the early development of the associated flare and/or coronal mass ejection event is extremely fast (on the order of a few minutes) and can encompass most of the solar disk, thus requiring a full disk solar imager with very high time-cadence, and wide spectral coverage. An important subset of the energetic particle events are the near-relativistic impulsive electron events detected near Earth: their onsets can be traced back to a release time in the low corona with accuracies on the order of a couple of minutes. We investigate a series of impulsive electron events from 1998 to 2001 using energetic electron data measured in situ by the Electron, Proton, and Alpha Monitor (EPAM) experiment on the Advanced Composition Explorer (ACE) spacecraft, and radio coronal observations from the Nanqay Radioheliograph, the Decametric Array from Nanqay and the WAVES experiment on the WIND spacecraft. EPAM measures electrons in the energy range from 40 to 300 keV over a wide range of look directions and with better than 1 minute time resolution, while the Nançay radioheliograph provides images of the solar corona at 5 different frequencies with time cadence of 8 images per second and per frequency. This study focuses on the events which correspond to a delay, between the inferred injection times of the electrons at the Sun, and the electromagnetic emissions from flares, of at least 5 minutes. Radio signatures are found near the estimated time of the electron release for each of the events. The timing and spectral characteristics of the radio emissions, when compared with the properties of the particles seen at EPAM, strongly support an acceleration process in the corona but at highly variable heights from one event to the other.  相似文献   

9.
Type III-L bursts constitute a class of type III bursts that are intense, complex, and of long duration at hectometric wavelengths. They are often associated with major flares and fast coronal mass ejections. Several observations suggested that the electron beams that produce these complex hectometric emissions could be accelerated and injected in the low or in the middle corona. In this study, we revisit the origin of these bursts by tracing the progression of the events from the low corona to the interplanetary medium. We show that type III-L features are related to sudden changes in the radio emission observed at metric and decametric wavelengths, in particular the onset of new emitting sources at positions that can be at large distances from the flare site.  相似文献   

10.
Very Large Array (VLA) observations at 20 and 91 cm wavelength are compared with data from the SOHO (EIT and MDI) and RHESSI solar missions to investigate the evolution of decimetric Type I noise storms and Type III bursts and related magnetic activity in the photosphere and corona. The combined data sets provide clues about the mechanisms that initiate and sustain the decimetric bursts and about interactions between thermal and nonthermal plasmas at different locations in the solar atmosphere. On one day, frequent, low-level hard X-ray flaring observed by RHESSI appears to have had no clear affect on the evolution of two closely-spaced Type I noise storm sources lying above the target active region. EIT images however, indicate nearly continuous restructuring of the underlying EUV loops which, through accompanying low-level magnetic reconnection, might give rise to nonthermal particles and plasma turbulence that sustain the long-lasting Type I burst emission. On another day, the onset of an impulsive hard X-ray burst and subsequent decimetric burst emission followed the gradual displacement and coalescence of a small patch of magnetic magnetic polarity with a pre-existing area of mixed magnetic polarity. The time delay of the impulsive 20 and 91 cm bursts by up to 20 min suggests that these events were unlikely to represent the main sites of flare electron acceleration, but instead are related to the rearrangement of the coronal magnetic field after the main flare at lower altitude. Although the X-ray flare is associated with the decimetric burst, the brightness and structure of a long-lasting Type I noise storm from the same region was not affected by the flare. This suggests that the reconfiguration of the coronal magnetic fields and the subsequent energy release that gave rise to the impulsive burst emission did not significantly perturb that part of the corona where the noise storm emission was located.  相似文献   

11.
Radio emissions during and outside solar flares are tracers of energetic electrons from the bottom of the corona to the interplanetary space. This review focusses on impulsive flares, where joint analyses of radio, hard X-ray and γ-ray observations proved to be powerful probes of the properties of accelerated electrons and of the sites in the corona where they are accelerated. Evidence of electron acceleration and transport in the corona from microwave imaging and decimetre wave spectroscopy is reviewed and compared, and recent work on the interpretation of microwave spectra in terms of energetic electron spectra is discussed. The two directions for future instrumentation are the extension to shorter wavelengths, with the aim of probing relativistic electrons, and solar dedicated spectral imaging from centimetric to metric waves to provide a unified view of the acceleration signatures that stem so far from different instruments with either spectroscopic or imaging capabilities.  相似文献   

12.
The footpoint motions of flare hard X-ray (HXR) sources are directly related to the reconnection scenario of a solar flare. In this work, we tried to extract the information of footpoint motions for a number of flares observed with RHESSI. We found that the RHESSI flare results of the footpoint motions strongly support the classification proposed from the observations of YOHKOH/HXT. Furthermore, it is found that a flare can consist of two types of footpoint motions. We discussed the connections of the footpoint motions with the two-dimensional reconnection models.  相似文献   

13.
In this report briefly presented the contemporary state of the experimental base of Radio Astrophysical Observatory (RAO) of the Institute of Solar-Terrestrial Physics (ISTP), the methodology of radioheliographic monitoring of the solar corona, the SSRT database, the RAO Web-pages, factors limiting the effective use of SSRT. Here are formulated the original results of the basic directions of the solar activity researches and the problems solutions on SSRT: (1) active regions at various development stages, morphology, modeling,signs of energy accumulation and flares buildup, forecast of powerful flares; (2) scenario, topology and the fine temporal picture of flares development, signs of primary energy release, radio emission mechanisms, scatter effects of radio emission in turbulent corona, energetic particles fluxes; (3) filaments; (4) CME with the localization of their initiation at the solar disk background, development scenario of filament activation + CME +flare; (5) coronal holes, and (6) bright coronal points.   相似文献   

14.
Narrowband dm-spikes observed in nine intervals during five solar flares in the 1–2 GHz range were analyzed together with the RHESSI and HXRS observations. It was found that the over-frequency integrated radio flux during the spike period is closely related with the hard X-ray bursts (the correlation coefficient was 0.7–0.9) and their time delays after X-rays were 2–14 s, with one exception (March 18, 2003) where the time delay was opposite −15 s. Association of spikes with X-ray spectral characteristics enabled us to divide the spikes into two groups: (a) those observed before the soft X-ray flare maximum and, (b) those observed after this maximum. While for the spikes observed after the flare maximum no systematic spectral characteristics were found, the spikes, observed before the flare maximum were at their beginning associated with relatively hard X-ray spectra and their hardness decreased with time. The RHESSI X-ray sources were compact, only in the March 18, 2003 event an additional X-ray source appeared just at the time of the dm-spikes observation. Fourier transformation of the dynamic spectra of spikes was done to compare their dynamics with the X-ray spectral indices. No correlation between power-law spike and X-ray indices were found. It indicates that the MHD turbulence, if it plays a role, does not represent a strong connection between the spectral characteristics of the dm-spikes and associated X-ray bursts. Furthermore, the results were compared with those obtained by (Aschwanden, M.J., Güdel, M. The coevolution of decimetric millisecond spikes and hard X-ray emission during solar flares. Astrophys. J. 401, 736–753, 1992) for spikes observed on lower radio frequencies. Contrary to their results, no monotonic dependence between time delays and X-ray intensities were found. Finally, the results were discussed using the model of the narrowband dm-spikes and model of electron acceleration in the collapsing magnetic trap.  相似文献   

15.
Many physical processes precede and accompany the solar energetic particles (SEP) occurrence on the Earth’s orbit. Explosive energy release on the Sun gives rise to a flare and a coronal mass ejection (CME). X-ray and gamma emissions are believed to be connected with flares. Radio emission is signature of disturbances traveling through the corona and interplanetary space. Particles can gain energy both in the flare and the accompanying wave processes. The beginning of the SEP events has the advantage of being the phase most close to the time of acceleration. Influence of interplanetary transport is minimal in the case of first arriving relativistic solar protons recorded by ground based neutron monitors in so called ground-level enhancements (GLE). The early phase of the SEP events attracts attention of many scientists searching for the understanding of particle acceleration. However, they come to the opposite conclusions. While some authors find arguments for coronal mass ejections as a sole accelerator of SEPs, others prove a flare to be the SEP origin. Here, the circumstances of SEP generation for several GLEs of the 23rd solar cycle are considered. Timing of X-ray, CME, and radio emissions shows a great variety from event to event. However, the time of particle ejection from the Sun is closer to maximum of X-ray emission than to any other phenomena considered. No correlation is found between the particle fluxes and the CME characteristics.  相似文献   

16.
We study a solar flare hard X-ray (HXR) source observed by the Reuven Ramaty high energy solar spectroscopic imager (RHESSI) in which the HXR emission is almost entirely in a coronal loop so dense as to be collisionally thick at electron energies up to ∼45−60 keV. This contrasts with most events previously reported in which the HXR emission is primarily from the loop footpoints in the collisionally dense chromosphere. In particular, we show that the high loop column densities inferred from the GOES and RHESSI soft X-ray emission measure and the volume of the flare loop are consistent with the coronal thick-target interpretation of the HXR images and spectra. The high column densities observed already at the very beginning of the impulsive phase are explained by chromospheric evaporation during a preflare which, as Nobeyama 17 GHz radio images reveal, took place in the same set of nested loops as the main flare.  相似文献   

17.
Recent advances in the study of energy release in Flares are reviewed. Progress has been made in modelling coronal X-ray emission and the chromospheric response to energy imput. These advances are based on theoretical studies and on the comparison of complementary data obtained from spacecraft and ground-based observatories. We first review the modelling of the coronal flare derived from radio, X-ray and XUV observations. Then we summarize results on the chromospheric response to various energy imput. Observations of X-ray continuum intensity and polarization, transition zone lines and chromospheric lines do not show evidence of particle trapping by a turbulent front. Although they might be in agreement with trapping and partial precipitation. White light flares appear to result from energy deposited above the photosphere. They are probably due to electron bombardment. The implication of these results on the primary energy release process are discussed and prospects for new research are presented.  相似文献   

18.
Hard X-ray and high frequency decimetric type III radio bursts have been observed in association with the soft X-raysolar flare (GOES class M 6.1) on 4 April 2002 (1532 UT). The flare apparently occurred 6 degrees behind the east limb of the Sun in the active region NOAA 9898. Hard X-ray spectra and images were obtained by the X-ray imager on RHESSI during the impulsive phase of the flare. The Brazilian Solar Spectroscope and Ondrejov Radio Telescopes recorded type III bursts in 800–1400 MHz range in association with the flare. The images of the 3–6, 6–12, 12–25, and 25–50 keV X-ray sources, obtained simultaneously by RHESSI during the early impulsive phase of the flare, show that all the four X-ray sources were essentially at the same location well above the limb of the Sun. During the early impulsive phase, the X-ray spectrum over 8–30 keV range was consistent with a power law with a negative exponent of 6. The radio spectra show drifting radio structures with emission in a relatively narrow (Δf ≤ 200 MHz) frequency range indicating injection of energetic electrons into a plasmoid which is slowly drifting upwards in the corona.  相似文献   

19.
本文计算、分析了太阳耀斑加速电子在日冕中传输时激发的等离子体尾场的效应,认为耀斑电子的高能成份激发的尾场,能够加速低能耀斑电子,低能耀斑电子的能量增值可达几十keV至上百keV,这种尾场加速将软化约100keV以下的能量范围内(探测阈之上)的耀斑电子能谱。结合考虑尾场效应,本文提出了太阳耀斑加速电子从加速区到形成电子事件之间的能谱演化模式,说明了太阳纯电子事件的双幂律电子能谱和太阳质子-电子事件的单幂律电子能谱的形成,认为两类事件的电子能谱差异为耀斑电子日冕传输中不同程度的尾场效应所致,前者尾场效应弱,电子能谱呈双幂律,后者尾场效应较强,电子能谱为单幂律谱。   相似文献   

20.
The energy content of nonthermal particles in solar flares is shared between accelerated electrons and ions. It isimportant for understanding the particle acceleration mechanism in solar flares. Yohkoh observed a few intense flares which produced both strong gamma-ray lines and electron bremsstrahlung continuum. We analyze energy spectra of X-class solar flares on October 27, 1991(X6.1), November 6, 1997 (X9.4), July 14, 2000 (X5.7) and November 24, 2000 (X2.3). The accelerated electron and proton spectra are derived from a spectral analysis of their high-energy photon emission and the energy contents in >1 MeV electrons and >10 MeV protons are estimated to be 6×l028 – 4×1030 and 2×1028 – 5×1029 erg, respectively. We study the flare to flare variation in the energy content of >1 MeV electrons and >10 MeV protons for the four Yohkoh gamma-ray flares. Ratios of >1 MeV electron energy content to >10 MeV proton energy content are roughly within an order of magnitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号