首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 93 毫秒
1.
风洞实验结果表明鸭翼展向吹气能提高飞机大迎角升力,延缓机翼涡破裂,增大飞机失速迎角.但由于鸭翼展向吹气需从发动机引气,这势必对发动机推力和飞机的各项性能产生影响.采用动量定理和耗油率公式对从发动机引气造成的气流质量流量损失、发动机推力损失和对飞机总升力(引气造成的升力损失和鸭翼吹气获得的升力增量之和)的影响等方面进行了评估,并比较了机翼展向吹气与鸭翼展向吹气两种方式.结果表明,鸭翼展向吹气引气量少、推力损失小,对飞机大迎角机动性能有利,是一种可取的间接涡控制技术.   相似文献   

2.
旋涡发生器对机翼最大升力和失速迎角的影响   总被引:2,自引:0,他引:2  
对一个展长为500?mm,弦长为250?mm,翼型为NACA0012的机翼模型,安装各种小三角翼旋涡发生器作低速风洞测力实验,研究小三角翼各种弯度和它与机翼的相对位置对机翼最大升力和失速迎角的影响.实验结果表明当小三角翼与机翼在某个最佳相对位置时,机翼最大升力和失速迎角有个最大的增加.当小三角翼与机翼的相对位置不变时,各种弯度的小三角翼都可以使机翼最大升力和失速迎角有较大的增加,并且相互差别不大.  相似文献   

3.
为了探究螺旋桨滑流对低雷诺数菱形翼布局太阳能无人机气动特性的影响,采用动量源方法(MSM)与k-kL-ω转捩模型求解雷诺平均Navier-Stokes(RANS)方程对不同转速状态下菱形翼布局太阳能无人机的气动特性进行了准确模拟。并通过对比机翼表面流场结构与压力分布,分析了不同迎角下螺旋桨转速变化对菱形翼布局前后翼气动干扰的机理。研究表明:随着螺旋桨转速增大,小迎角下增升减阻效果明显,最大升阻比在3 000 r/min时提升了18.4%。在小迎角时,前翼气流受到抽吸作用,升力增加,后翼受螺旋桨旋转气流影响,前缘出现大范围吸力区,压差阻力减小。在大迎角时,前翼影响不变,后翼前缘下表面吸力区范围及强度均减弱,前缘负升力区消失,增升效果改善,压差阻力增加。由于在不同迎角时,升力增量的主要贡献部件不同,导致无人机纵向静稳定裕度随着转速的提升而增大。菱形翼布局太阳能无人机通过合理设置螺旋桨位置与转速,可有效利用螺旋桨滑流提升气动性能。   相似文献   

4.
超声速民机较高的飞行速度导致发动机短舱与机翼机身存在强烈的气动干扰,且高速喷流会改变主流的激波系结构,进而影响声爆强度。以超声速民机为研究对象,对不同短舱布局开展数值模拟研究,揭示发动机短舱位置、数量对近场过压信号特性的影响规律。数值模拟运用有限体积法在直角网格上求解流体控制方程进行,通过伴随自适应网格加密生成高分辨率网格以精确捕捉近场过压信号。结果表明:发动机进气道唇口激波、尾喷口后缘激波及尾喷流与机体机翼引起的激波系存在强烈的相互干扰,一定程度上增加了近场过压幅值,从而增强了声爆强度。短舱沿弦向前移及置于机翼上方可以有效降低声爆强度,沿展向外移通过抑制尾部各激波的合并也可有效降低声爆强度;在相同总推力前提下,相比三发构型,双发构型能有效降低后体激波强度,但较大尺寸的短舱引起较强的进气道唇口激波。综合考虑喷流噪声和气动阻力因素,翼下双发布局对于新一代超声速民机并非最佳选项。  相似文献   

5.
分布式电推进(DEP)飞机充分利用气动/推进耦合效应提高飞机的气动效率,但动力数量增加导致螺旋桨滑流与翼面流场干扰强烈,气动分析和设计的复杂度及计算成本上升。为提高DEP飞机早期设计阶段气动设计效率,降低研制成本,采用线性无黏的涡格法-激励盘理论(VLM-ADT)、涡格法-非定常涡格法(VLM-UVLM)及加入黏性修正的VLM(Modified-VLM)提出气动特性快速评估方法。对单机翼、单螺旋桨/机翼耦合、X-57机翼(巡航、高升力状态)及分布式螺旋桨/机翼耦合构型的气动特性进行快速评估。与基于雷诺平均Navier-Stokes(RANS)方程求解器的结果对比,单机翼和单螺旋桨/机翼升力系数和阻力系数一致性良好,误差最大不超过8.2%;俯仰力矩系数在同一数量级。X-57机翼和分布式螺旋桨/机翼的升力系数与RANS方程结果吻合度较高,误差最大不超过10%。考虑黏性修正的VLM所计算的X-57机翼和分布式螺旋桨/机翼的总阻力系数与RANS方程结果趋势一致。分布式螺旋桨滑流增加机翼的动压,使机翼局部有效迎角发生改变,改变了机翼当地升阻特性。所提方法为分布式螺旋桨飞机在早期设计阶段气动特性快...  相似文献   

6.
倾转旋翼机由于需要兼顾垂直起降和高速平飞2种典型工况下的动力需求,采用大直径旋翼作为推进装置会使机翼大部分处于旋翼滑流区内,这与常规螺旋桨飞机存在较大差异。为评估不同数值计算方法并研究旋翼滑流对倾转旋翼机气动特性的影响,针对选取两叶旋翼的某倾转旋翼机方案,利用激励盘模型、多参考系(MRF)模型、滑移网格模型分别进行了巡航状态下旋翼滑流对全机气动特性影响的数值模拟研究。结果表明:相对于无滑流状态,滑流定常影响使全机阻力增大,最大升阻比降低了7.5%,尾翼产生的升力增大,纵向静稳定度增加了17.1%,全机低头力矩增大;当迎角较小时,滑流虽然改变了机翼表面的升力分布,但是全机升力变化不大;滑流非定常影响会使全机气动特性产生周期性波动,升力系数波动幅度为9.0%,阻力系数波动幅度为10.8%,并且随着迎角的增大,波动幅度也越大。   相似文献   

7.
定常射流在大迎角下气动性能较差,借助脉冲射流能够有效改善大迎角下的气动性能,并减少射流所需质量流量。采用非定常数值模拟的方法进行了脉冲射流作用下的环量控制翼型气动特性计算和流场分析。总结了占空比和频率分别对时均升力和升力脉动幅值的影响趋势;分析了不同迎角下的脉冲射流流动机理;进一步指出了射流动量系数的影响规律,并借助脉冲射流和定常射流的叠加效应有效缓解了升力脉动现象。结果表明:低占空比、同等升力系数下,脉冲射流可大幅度减小质量流量,但升力脉动幅值较大;小迎角下随频率增大,升力系数先增大后减小,但整体变化幅度不大,大迎角下随频率增大,升力系数持续性增大;脉冲射流能够推迟失速迎角,扩宽环量控制技术的可用迎角,并且随动量系数增大,这种优势更加明显;借助脉冲射流与定常射流的叠加效应,能够有效缓解脉冲射流作用下的升力脉动现象,达到飞行使用条件。   相似文献   

8.
联合射流控制技术的增升效果和机理   总被引:4,自引:0,他引:4  
数值模拟联合射流翼型的绕流,研究联合射流控制技术的增升效果和机理.主控方程选为定常可压缩流动的质量加权平均N-S方程和S-A湍流模型,使用Fluent软件进行数值求解.计算结果表明,联合射流控制技术可以有效地减小翼型的零升迎角、提高翼型的最大升力系数和失速迎角.通过理论分析,揭示了联合射流控制技术的增升机理,即通过增加翼型上表面的流速从而增大绕翼型的环量,通过向边界层内注入能量从而延迟翼型大迎角下的流动分离.  相似文献   

9.
为分析前掠翼气动布局设计在航空工业中无法得到推广运用的原因,将前掠翼和后掠翼通过加装边条和鸭翼形成简化的边条翼布局、鸭式布局和边条/鸭式布局,从而深入认识前掠翼和后掠翼两种不同布局之间的流动特点以及涡系干扰机理。首先进行算例数值计算,通过对比分析计算结果与试验数据,验证了数值计算方法的可靠性和准确性;然后对不同布局进行数值计算,得到各布局的升力系数曲线;最后通过压力分布云图和流线图对各布局中复杂涡系的干扰机理进行分析。结果表明:基于后掠机翼形成的边条翼布局、鸭式布局和边条/鸭式布局中的涡系之间通过诱导和卷绕作用,涡系相互增强,大幅提高了布局的升力系数并推迟失速迎角,同时加装边条和鸭翼效果更加明显;基于前掠机翼形成的边条翼布局、鸭式布局和边条/鸭式布局中的涡系之间不存在卷绕作用,涡系之间存在碰撞挤压的不利干扰,这使得前掠翼布局在大迎角时的升力系数远远低于相应的后掠翼布局。前掠翼气动布局中的机翼前缘涡在大迎角时无法同鸭翼涡和边条涡相互耦合增强,不能充分地利用非线性升力,这是前掠翼气动布局设计中的一些不足。   相似文献   

10.
机翼后缘连续变弯度对客机气动特性影响   总被引:1,自引:0,他引:1  
后缘连续变弯度机翼在提高民用客机气动特性方面有较大的潜力,近年来被广泛关注。基于建立的全局优化设计系统,研究了机翼后缘连续变弯度对宽体客机翼身组合体气动特性的影响。首先,采用自由型面变形(FFD)技术建立了后缘连续变弯度的参数化方法。然后,采用RANS方程作为流场评估方法,针对翼身组合体构型设计点附近升力系数开展了机翼后缘连续变弯度气动减阻优化设计。最后,探索了仅外翼段后缘连续变弯度和内外翼后缘均连续变弯度优化设计结果的异同。优化结果表明,升力系数小于设计升力系数时,在只考虑外翼段后缘连续变弯度的设计中,不易实现激波阻力和诱导阻力同时降低,考虑内翼段后缘连续变弯度后,减阻量较前者更为明显;升力系数大于设计升力系数时,外翼段和内外翼的后缘偏转均可实现诱导阻力和激波阻力的同时降低,且减阻量相差不大。  相似文献   

11.
柔性后缘可变形机翼气动特性分析   总被引:1,自引:1,他引:1  
应用后缘主动变弯度技术的机翼能够改善飞行器的气动性能,其气动特性的研究对于未来可变形机翼的设计具有重要意义。以柔性后缘可连续变弯度二元机翼为研究对象,在Fluent计算平台上采用可压缩Navier-Stokes方程和Spalart-Allmaras(S-A)湍流模型进行气动力数值研究,从压力分布、流场结构和机翼变形方式等方面分析了可变形机翼的气动特性。数值计算结果表明,可变形机翼升力线斜率和最大升力系数与常规带简单襟翼的机翼基本一致,但失速攻角较小;在失速之前,可变形机翼具有较高的升力系数和升阻比,但同时产生较大的低头力矩。柔性后缘下偏到一定角度可以抑制后缘涡的前传,在失速后升力系数出现缓慢上升,增大了有效攻角的范围,具有较好的失速特性。   相似文献   

12.
前掠翼气动布局中鸭翼高度影响的实验   总被引:2,自引:0,他引:2  
基于前掠翼-鸭式前翼布局的风洞测力实验,分析了距离主机翼较远的鸭翼相对于主机翼的高度对布局纵向气动性能的影响.基于主机翼根弦长的雷诺数约为1.44×105.实验结果表明,较大的主机翼前掠角与较低的鸭翼配合,产生的升力系数增量比较显著.低于主机翼的鸭翼将加强前掠翼布局的缓失速特性.鸭翼增大升力的同时也增大了阻力;大攻角时,鸭翼带来的阻力增量较大.高于主机翼的鸭翼对最大升阻比的改善较多,但也不宜过高.主机翼前掠角较小时,鸭翼改善和提高升阻比的效果比较明显.  相似文献   

13.
鸭翼布局中双立尾对全机气动及流场特性影响   总被引:2,自引:0,他引:2  
在战斗机先进气动布局研究中,双立尾位置的选择始终是一个十分重要的问题.不适当的双立尾位置会给飞机纵横向气动特性带来严重的影响.对一种鸭翼布局的飞机模型,按3种不同的双立尾配置进行了气动力测量、流态显示,然后用PIV(Particle Image Velocimetry)进行了不同迎角下的流场测量.结果表明:双立尾处于飞机内侧后置内移位置其最大升力系数具有最大值.破裂过程及流场特性同无双立尾时的情况十分相似,进而说明双立尾同机翼涡的干扰主要是促进了涡的提早破裂,从而恶化了全机气动特性.   相似文献   

14.
通过在三角翼上游加入干扰圆柱的风洞实验方法,研究了来流干扰对微小型飞行器MAV(Micro Air Vehicle)气动特性的影响.结果表明,在刚性和弹性三角翼顶点上游加入圆柱干扰时,两者均出现缓失速,刚性翼产生缓失速与干扰圆柱尾流关系密切,弹性翼的缓失速不仅与此有关,还与弹性翼的振动有关.无干扰或在机翼顶点加入干扰时,在攻角为4°~18°内弹性翼的升力系数比刚性翼的要大,但升阻比相对要小.由于弹性翼的振动与机翼绕流结构、气动力之间的耦合,弹性翼顶点与翼尖振动的主频随着攻角增大呈规律性的变化,失速攻角附近翼尖的振动主频是其涡脱落频率.   相似文献   

15.
微型飞行器在军、民用领域具有广阔的应用前景,柔性翼是提升微型飞行器的气动性能的有效方法。为了更好地对柔性翼进行控制,对柔性翼变形和振动特性及其对气动力的影响进行了同步测量。研究结果表明,相比于刚性翼,柔性翼使失速迎角推迟了6°,最大升力系数提升了47.4%,升阻比提高了17.8%。柔性翼的周期性振动除了迎角0°~2°呈现大振幅、小静变形特征外,振动的振幅随着迎角增加经历无明显波峰、三波峰到单波峰的转换。升力系数最大时对应的薄膜变形、振动振幅均达到最大。此外,变形最大的弦向位置随迎角的变化决定了俯仰力矩的特性。据此提出了施加弯度和特定频率的振动激励来提升气动性能的主动控制策略。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号