首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Results obtained from nine experiments performed onboard Russian biosatellites have shown that microgravity promotes tissue regeneration in the newt, Pleurodeles waltl. The effect has been reproduced in all flights and on a clinostat as well for eye tissues (lens and retina), limbs and tail. The effect was demonstrated in 1.5- to 2-fold increase in cell proliferation in the early stages of regeneration in space flight. Animals "flown" intact and operated after flight regenerated faster than control ones and showed long-lasting micro-"g" effect. The most recent experiment flew aboard the Bion-11 biosatellite. This test was performed for study on microgravity effect on neural retina regeneration after optic nerve lesioning in the newt. Obtained results confirmed our previous information about intensification of regenerative processes in detached neural retina in urodela exposed to simulated weightlessness (Grigoryan et al., 1998). In particular, we found the increase and activation of cell populations participating in neural retina restoration and maintenance of retinal structure. Our findings suggest that promoting effect of microgravity upon regeneration could be influenced by several factors, largely influenced by a response of the whole organism to changed gravity vector. We hypothesized the synthesis of the specific range of stress proteins induced by micro-"g" and their regulative role in cell proliferation. Such a hypothesis for the existence of "altered gravity stress proteins" is discussed.  相似文献   

2.
Retrospective and ongoing analyses of clinical records from 347 primary intraocular melanoma patients treated with helium ions at LBL will allow examination of the exposure-response data for human cataract; which is a complication of the therapy from incidental exposure of the lens. Direct particle beam traversal of at least a portion of the lens usually is unavoidable in treatment of posterior intraocular tumors. The precise treatment planned for each patient permits quantitative assessment of the lenticular dose and its radiation quality. We are reporting our preliminary results on the development of helium-ion-induced lens opacifications and cataracts in 54 of these patients who had 10% or less of their lens in the treatment field. We believe these studies will be relevant to estimating the human risk for cataract in space flight.  相似文献   

3.
Two species of newts (Urodela) and two types of clinostats for fast clinorotation (60 rpm) were used to investigate the influence of simulated weightlessness on regeneration and to compare results obtained with data from spaceflight experiments. Seven or fourteen days of weightlessness in Russian biosatellites caused acceleration of lens and limb regeneration by an increase in cell proliferation, differentiation, and rate of morphogenesis in comparison with ground controls. After a comparable time of clinorotation the results obtained with Triturus vulgaris using a horizontal clinostat were similar to those found in spaceflight. In contrast, in Pleurodeles waltl using both horizontal and radial clinostats the results were contradictory compared to Triturus. We speculate that different levels of gravity or/and species specific thresholds for gravitational sensitivity could be responsible for these contradictory results.  相似文献   

4.
An experiment using plant protoplasts has been accepted for the IML-1 Space Shuttle mission scheduled for 1991. Preparatory experiments have been performed using both fast and slow rotating clinostats and in orbit to study the effect of simulated and real weightlessness on protoplast regeneration. Late access to the space vehicles before launch has required special attention since it is important to delay cell wall regeneration until the samples are in orbit. On a flight on Biokosmos 9 ("Kosmos-2044") in September 1989 some preliminary results were obtained. Compared to the ground control, the growth of both carrot and rapeseed protoplasts was decreased by 18% and 44% respectively, after 14 days in orbit. The results also indicated that there is less cell wall regeneration under micro-g conditions. Compared to the ground controls the production of cellulose in rapeseed and carrot flight samples was only 46% and 29% respectively. The production of hemicellulose in the flight samples was 63% and 67% respectively of that of the ground controls. In both cases all samples reached the stage of callus development. The peroxidase activity was also found to be lower in the flight samples than in the ground controls, and the number of different isoenzymes was decreased in the flight samples. In general, the regeneration processes were retarded in the flight samples with respect to the ground controls. From a simulation experiment for IML-1 performed in January 1990 at ESTEC, Holland, regenerated plants have been obtained. These results are discussed and compared to the results obtained on Biokosmos 9. Protoplast regeneration did not develop beyond the callus stage in either the flight or the ground control samples from the Biokosmos 9 experiment.  相似文献   

5.
Optomechanical systems are very complex requiring a high degree of accuracy. The carrier structure of an optical system is required to maintain the position of the optical components with respect to each other within the design tolerances. The most common loads on optical systems are self-weight, due to gravity orientations, and temperature ranges, due to exposure to rapidly changing temperatures from very cold to very hot and during launch. The fixing should ensure mechanical stability and thus accurate positioning in various gravity orientations.In order to ensure reliability during a space flight mission, the optomechanical engineer must understand the requirements of the space flight environment as well as the physics of failure of the optical components themselves; this can minimize the risks of on-orbit failure.This paper focuses on the optomechanical optimal design lens mounting using glue pads bonding. The main idea of this research study is to obtain an optimal choice of the position of the glue to fix the lenses on the barrel in such a way that we obtain a configuration of the optical assembly performance with less stress.In this paper, an investigation was performed using several methods including (thermo-elastic analysis, the margin of safety and lens distortion analysis). The results show that the position with six contacts glue pads is the best configuration compared to other configurations. This solution can be very helpful for decision-makers and optical engineers during the development phases of space optomechanical systems.  相似文献   

6.
7.
Production and action of cytokines in space.   总被引:3,自引:0,他引:3  
B6MP102 cells, a continuously cultured murine bone marrow macrophage cell line, were tested for secretion of tumor necrosis factor-alpha and Interleukin-1 during space flight. We found that B6MP102 cells secreted more tumor necrosis factor-alpha and interleukin-1 when stimulated in space with lipopolysaccharide than controls similarly stimulated on earth. This compared to increased secretion of interferon-beta and -gamma by lymphocytes that was measured on the same shuttle flights. Although space flight enhanced B6MP102 secretion of tumor necrosis factor-alpha, an experiment on a subsequent space flight (STS-50) found that cellular cytotoxicity, mediated by tumor necrosis factor-alpha, was inhibited.  相似文献   

8.
Effects of space flight and IGF-1 on immune function   总被引:1,自引:0,他引:1  
We tested the hypothesis that insulin-like growth factor-1 (IGF-1) would ameliorate space flight-induced effects on the immune system. Twelve male, Sprague-Dawley rats, surgically implanted with mini osmotic pumps, were subjected to space flight for 10 days on STS-77. Six rats received 10 mg/kg/day of IGF-1 and 6 rats received saline. Flight animals had a lymphocytopenia and granulocytosis which were reversed by IGF-1. Flight animals had significantly higher corticosterone levels than ground controls but IGF-1 did not impact this stress hormone. Therefore, the reversed granulocytosis did not correlate with serum corticosterone. Space flight and IGF-1 also combined to induce a monocytopenia that was not evident in ground control animals treated with IGF-1 or in animals subjected to space flight but given physiological saline. There was a significant increase in spleen weights in vivarium animals treated with IGF-1, however, this change did not occur in flight animals. We observed reduced agonist-induced lymph node cell proliferation by cells from flight animals compared to ground controls. The reduced proliferation was not augmented by IGF-1 treatment. There was enhanced secretion of TNF, IL-6 and NO by flight-animal peritoneal macrophages compared to vivarium controls, however, O2 secretion was not affected. These data suggest that IGF-1 can ameliorate some of the effects of space flight but that space flight can also impact the normal response to IGF-1.  相似文献   

9.
Biological dosimetry in Russian and Italian astronauts.   总被引:1,自引:0,他引:1  
Large uncertainties are associated with estimates of equivalent dose and cancer risk for crews of long-term space missions. Biological dosimetry in astronauts is emerging as a useful technique to compare predictions based on quality factors and risk coefficients with actual measurements of biological damage in-flight. In the present study, chromosomal aberrations were analyzed in one Italian and eight Russian cosmonauts following missions of different duration on the MIR and the international space station (ISS). We used the technique of fluorescence in situ hybridization (FISH) to visualize translocations in chromosomes 1 and 2. In some cases, an increase in chromosome damage was observed after flight, but no correlation could be found between chromosome damage and flight history, in terms of number of flights at the time of sampling, duration in space and extra-vehicular activity. Blood samples from one of the cosmonauts were exposed in vitro to 6 MeV X-rays both before and after the flight. An enhancement in radiosensitivity induced by the spaceflight was observed.  相似文献   

10.
The in vivo model our laboratory uses for studies of cartilage differentiation in space is the rat growth plate. Differences between missions, and in rat age and recovery times, provided differing results from each mission. However, in all missions, proliferation and differentiation of chondrocytes in the epiphyseal plate of spaceflown rats was altered as was matrix organization. In vitro systems, necessary complements to in vivo work, provide some advantages over the in vivo situation. In vitro, centrifugation of embryonic limb buds suppressed morphogenesis due to precocious differentiation, and changes in the developmental pattern suggest the involvement of Hox genes. In space, embryonic mouse limb mesenchyme cells differentiating in vitro on IML-1 had smoother membranes and lacked matrix seen in controls. Unusual formations, possibly highly ruffled membranes, were found in flight cultures. These results, coupled with in vivo centrifugation studies, show that in vivo or in vitro, the response of chondrocytes to gravitational changes follows Hert's curve as modified by Simon, i.e. decreased loading decreases differentiation, and increased loading speeds it up, but only to a point. After that, additional increases again slow down chondrogenesis.  相似文献   

11.
Space flight, microgravity, stress, and immune responses.   总被引:4,自引:0,他引:4  
Exposure of animals and humans to space flight conditions has resulted in numerous alterations in immunological parameters. Decreases in lymphocyte blastogenesis, cytokine production, and natural killer cell activity have all been reported after space flight. Alterations in leukocyte subset distribution have also been reported after flight of humans and animals in space. The relative contribution of microgravity conditions and stress to the observed results has not been established. Antiorthostatic, hypokinetic, hypodynamic, suspension of rodents and chronic head-down tilt bed-rest of humans have been used to model effects of microgravity on immune responses. After use of these models, some effects of space flight on immune responses, such as decreases in cytokine function, were observed, but others, such as alterations in leukocyte subset distribution, were not observed. These results suggest that stresses that occur during space flight could combine with microgravity conditions in inducing the changes seen in immune responses after space flight. The biological/biomedical significance of space flight induced changes in immune parameters remains to be established. Grant Numbers: NCC2-859, NAG2-933.  相似文献   

12.
使用光学遥感设备开展地球大气层临边观测是研究中高层大气目标特性变化规律的重要手段之一.光学遥感设备的热状态对其光学精度及系统信噪比控制至关重要,能够直接影响观测数据质量乃至观测任务的实现.针对中高层大气OH自由基超分辨空间外差光谱仪在高空飞艇平台探测的热状态需求,分析了光谱仪吊舱的热环境,给出了光学吊舱的热平衡控制方程,并对上升/下降段和平飞段先后开展了热状态计算,得到光学吊舱在不同状态下的温度变化规律、光电部件的温度场等计算结果.结果表明热控方案能够满足光谱仪的热状态需求.根据热状态分析计算结果,制定了飞行前后及飞行过程中光学吊舱的热控策略.本文分析方法和飞行策略可为同类飞行设备热控状态设计及研究提供数据参考.   相似文献   

13.
选择中国载人航天发展目标的讨论   总被引:1,自引:1,他引:0  
回顾人类载人航天 40余年的历程 ,出现过一些弯路 ,究其原因是多方面的 ,但主要的是如何合理选择各自的发展目标。发展载人航天的目标大致可有6项 :开发利用空间微重力环境物质资源 ,开发利用空间轨道能源资源 ,开发利用月球能源资源 ,发展天基航天利用空间位置资源 ,在月球上扩大人类生存空间 ,在火星上扩大人类生存空间。文章系统分析了国际上现有载人航天工程的经验和教训 ,认为结合中国的具体实际 ,中国载人航天发展的目标应重点考虑开发利用空间微重力环境物质资源和发展天基航天。  相似文献   

14.
数字空间站作为真实空间站的数字化映像,将能源、信息、环热控、动力学与控制等多专业模型进行综合集成,建立舱段级、整站级多学科仿真系统,为空间站长期飞控任务提供技术支持.基于Modelica建模语言,结合采用FMI接口标准,完成了数字空间站动力学与控制仿真模型的集成,并成功在空间站飞控中进行了应用.  相似文献   

15.
Space flight has been shown to have many adverse effects on various systems throughout the body. Because the opportunity to place research animals on board a Space Shuttle or the International Space Station is infrequent, various techniques have been designed to simulate the effects of microgravity in Earth based laboratories. A commonly used technique is known as antiorthostatic suspension, also often referred to as hind limb suspension. In this technique the hind portion of the animal is raised so that its hind limbs are non-weight bearing. This places the animal in roughly a 30° head down tilt position. This results in cephalic fluid shifts similar to those seen in actual space flight. This technique has also been shown to mimic other physiological parameters that are affected during space flight. This study examined testicular tissue from rats subjected to a 7 day antiorthostatic suspension. This tissue was acquired through a tissue sharing program and some of the experimental animals were injected with Interleukin 1 receptor antagonist (IL-1ra) which was hoped to ameliorate some of the effects of antiorthostatic suspension. The injection of IL-1ra was not expected to have any effect on testicular tissue, however this tissue was included in the morphological and statistical analysis to conduct a more complete study. All tissues were embedded in paraffin, sectioned, and stained using standard H&E staining. The tissue was then qualitatively ranked according to the “health” of the seminiferous tubules. Our findings indicate that 7 days of antiorthostatic suspension had adverse effects on the tissue that comprises the walls of the seminiferous tubules. It has long been known that antiorthostatic suspension has deleterious effects on testicular tissue, however this research indicates that these effects occur much faster than indicated by previous researchers. This is a significant finding because it indicates that meaningful earth based studies in this area can be carried out in a shorter time span. This could result in more studies per year as well as saving money by avoiding longer than necessary animal suspensions. This is especially important as we enter an era when, without Space Shuttle, flight opportunities will become scarce. These antiorthostatic suspension studies indicate that space flight, even short duration spaceflight, may have harmful effects on the seminiferous tubules and blood-testis barrier of astronauts.  相似文献   

16.
17.
The responses of endocrine system to the exposure to stress-work load and hormonal changes during oral glucose tolerance tests were studied in the Slovak astronaut before (three weeks before flight), during (on the 4th and the 6th days of space flight), and after space flight (1-3 days and 15-17 days after space flight) on board of space station MIR. Blood samples during the tests were collected via cannula inserted into cubital vein, centrifuged in the special appliance Plasma-03, frozen in Kryogem-03, and at the end of the 8-day space flight transferred to Earth in special container for hormonal analysis. Preflight workload produced an increase of plasma norepinephrine and a moderate elevation of epinephrine levels. Plasma levels of insulin, growth hormone, prolactin and cortisol were not markedly changed immediately or 10 min after the end of work load. The higher increases of plasma growth hormone, prolactin and catecholamine levels were noted after workload during space flight as compared to preflight response. The higher plasma glucose and insulin levels were noted during the oral glucose tolerance test in space flight and also in the post flight period. Plasma epinephrine levels were slightly decreasing during glucose tolerance test; however, plasma norepinephrine levels were not changed. The similar patterns of catecholamine levels during glucose tolerance test were found when compared the preflight, in-flight and post flight values. These data demonstrate the changes of the dynamic responses of endocrine system to stress-work and metabolic loads during space flight in human subject.  相似文献   

18.
The Rhesus monkey has been proposed as a model for the effects of space flight on immunity. In order to determine the feasibility of the use of the Rhesus monkey as a model, we studied the use of Rhesus monkey cells for immunological procedures that have been shown to be affected by space flight in both rodents and humans. We have shown that both lymph node cells and peripheral blood leukocytes can be stained with monoclonal antibodies to detect the following surface markers: CD4, CD-8, Ia and surface immunoglobulin. Also, the level of Ia antigen expression was increased by treatment of the cells with human interferon-gamma. In addition, cells were induced to produce interferons and interleukins. Isolated neutrophils also demonstrated increased oxidative burst. These data indicate that the Rhesus monkey will be a useful model for space flight studies of immunity.  相似文献   

19.
  总被引:1,自引:1,他引:0  
提高驾驶员在复杂气象环境和系统故障等条件下的情景感知能力是保障飞行安全的有力措施。基于人-机-环动力学仿真,综合计算操纵指令下预测时间段内多个飞行安全参数风险变化趋势,通过飞行安全参数风险度的叠加,得到该飞行情形下的飞行安全谱和飞行风险概率。通过并行仿真计算整个操纵空间内的飞行风险拓扑云图,构建飞行安全操纵空间,引导驾驶员正确操纵。分析了结冰环境下和舵面卡阻故障模式下的飞行安全操纵空间、事故机理和主要敏感参数。仿真结果表明,外部环境突变或突发系统故障可导致飞行安全操纵空间缩减甚至畸变。飞行安全操纵空间的提出可为驾驶员在复杂条件下的安全操纵提供直观全面的参考,提高驾驶员的情景感知能力,也可为事故演化提供可视化的分析方法。  相似文献   

20.
The lipid and phospholipid composition of the erythrocyte membrane was investigated in man after long space flight and monkey after short space. The result obtained confirm structural changes in EM under the influence of SF factors and show that an increase of Ch and ChE fractions and in the Ch&ChE/PL ratio combined with a decrease of PL fractions. It was noticed that the magnitude of these changes is depend on duration of space flight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号