首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
导弹与高速飞行器气动模拟试验瞬态热控过程的特点是变化复杂、瞬变、高度非线性、强耦合,很难或者根本无法建立控制的数学模型.模糊控制具有鲁棒性好,对参数变化的适应性强,过渡过程时间短等常规控制方法所不能比拟的优点.将模糊控制方法应用于导弹瞬态气动加热模拟控制系统,使该系统能够按照导弹高速飞行过程中弹体表面热流的瞬态连续变化对气动模拟加热过程实施快速的动态控制.  相似文献   

2.
为了准确模拟飞行器在高速飞行时的瞬态气动加热状态,必须使用快速、高精度的计算机瞬态热能控制系统,对气动模拟试验的加热过程,实行快速、高精度的非线性动态控制.为此,传感器的快速、高精度"E-T"转换是一个必须解决的非常重要的问题.提出一种高速飞行器瞬态气动加热控制系统中传感器的快速、高精度"E-T"转换方法.该方法具有计算简单、转换速度快、校正精度高的优点,使用该方法实现了高速飞行器气动加热过程中温度场高速变化状态下的瞬态非线性动态控制.  相似文献   

3.
飞行器表面三维流场与固壁温度场的耦合分析   总被引:1,自引:0,他引:1  
分析了飞行器表面温度场形成的物理机制,建立了飞行器蒙皮温度场耦合计算的理论模型,较为完整的考虑了各种热源对飞行器蒙皮温度的作用.采用有限体积法和重整化群RNG(Renormalization Group)k-ε湍流模型对流场求解N-S方程,蒙皮固壁中采用热传导模型,采用离散坐标法DOM(Discrete Ordinates Method)计算蒙皮固体壁面对外界大气的辐射.通过数值计算研究了飞行高度、马赫数和内热源对蒙皮温度分布的影响,以及高度及马赫数对飞行器表面气动加热的作用.结果表明,该方法适合考虑飞行器外部流场、固壁等多种热源作用的温度场数值模拟.  相似文献   

4.
机翼防冰过程中冰脊问题的数值分析   总被引:1,自引:0,他引:1  
对机翼防冰过程中冰脊的形成特点及冰脊对机翼气动特性的影响进行了计算分析.基于经典的Messinger结冰模型开发了多步结冰程序,对不同条件下过冷水滴的撞击结冰进行了热质耦合计算,计算结果和文献试验结果吻合较好,表明该热质耦合算法的正确性.在此基础上对不同环境温度、飞行速度和不同加热功率等条件下冰脊的生长特点和机翼的气动特性进行了计算分析.结果表明:在非霜冰条件下,冰脊主要在热防护极限外并紧挨着热防护极限的位置处形成和发展,而在霜冰条件下,冰脊主要在机翼下表面形成,但是在热防护区域内有显著的结冰出现,该条件下的结冰对机翼的气动特性具有较大的破坏性.  相似文献   

5.
机翼防冰过程中冰脊问题的数值分析   总被引:1,自引:0,他引:1  
对机翼防冰过程中冰脊的形成特点及冰脊对机翼气动特性的影响进行了计算分析.基于经典的Messinger结冰模型开发了多步结冰程序,对不同条件下过冷水滴的撞击结冰进行了热质耦合计算,计算结果和文献试验结果吻合较好,表明该热质耦合算法的正确性.在此基础上对不同环境温度、飞行速度和不同加热功率等条件下冰脊的生长特点和机翼的气动特性进行了计算分析.结果表明:在非霜冰条件下,冰脊主要在热防护极限外并紧挨着热防护极限的位置处形成和发展,而在霜冰条件下,冰脊主要在机翼下表面形成,但是在热防护区域内有显著的结冰出现,该条件下的结冰对机翼的气动特性具有较大的破坏性.  相似文献   

6.
为研究谐振管内部的流动情况,建立了喷嘴-圆柱形谐振管系统的模型,利用二阶NND格式求解二维轴对称雷诺平均N-S方程,通过耦合求解传热方程在边界条件中考虑谐振管的传热,模拟气动谐振加热效应,得到了谐振管底部气体的压力与温度振荡曲线,计算结果与实验结果较为一致.结果表明,在约20 ms内即可完成对谐振管底部气体的谐振加热,且谐振管的传热是影响气动谐振加热温度的重要因素,在数值模拟中对其加以考虑可以提高计算准确性.   相似文献   

7.
亚临界雷诺数圆柱绕流远场气动噪声实验研究   总被引:2,自引:0,他引:2  
针对亚临界雷诺数下圆柱绕流的气动噪声问题,在北京航空航天大学D5气动声学风洞中进行了圆柱绕流远场气动噪声的实验研究。在D5气动声学风洞实验段不同来流条件下,测量消声室中距离圆柱不同位置的自由场传声器的远场声压信号,经过快速傅里叶变换(FFT)获得亚临界雷诺数下圆柱绕流气动噪声随来流速度、接收点距离的变化规律。实验结果表明:圆柱绕流的远场气动噪声在垂直气流方向最大,随着偏离垂直方向角度的增大噪声逐渐减小,属于典型的偶极子噪声源辐射特性;远场气动噪声近似与来流速度的6次方成正比,与接收点到圆柱中心距离的2次方成反比,这说明偶极子类型的噪声源是圆柱绕流的主要噪声源。   相似文献   

8.
对不带气室翼伞和带气室翼伞的气动特性和结构变形进行三维数值模拟,分析气室对翼伞气动特性和结构变形的影响.流场方面,采用有限体积法求解Navier-Stokes控制方程,选用剪切应力输运(SST,Shear-Stress Transport)k-ω湍流模型;结构方面,假定翼伞有初始形状,使用插值方法映射传递流固交界面的压力数据,通过ANSYS计算翼伞伞衣的气动变形.结果表明:气室对阻力影响不大,对升力的影响主要表现在大迎角情况下;翼伞柔性和尺寸大小对其有利迎角的范围影响不大;翼伞的气动变形和最大主应力主要集中在气室中前部分,带气室翼伞由于有肋片加强的缘故,伞衣气动变形较小,一定程度上保证了翼伞的气动特性.  相似文献   

9.
基于弱耦合的翼伞气动变形数值模拟   总被引:3,自引:2,他引:1  
对不带气室翼伞和带气室翼伞的气动特性和结构变形进行三维数值模拟,分析气室对翼伞气动特性和结构变形的影响.流场方面,采用有限体积法求解Navier-Stokes控制方程,选用剪切应力输运(SST,Shear-Stress Transport)k-ω湍流模型;结构方面,假定翼伞有初始形状,使用插值方法映射传递流固交界面的压力数据,通过ANSYS计算翼伞伞衣的气动变形.结果表明:气室对阻力影响不大,对升力的影响主要表现在大迎角情况下;翼伞柔性和尺寸大小对其有利迎角的范围影响不大;翼伞的气动变形和最大主应力主要集中在气室中前部分,带气室翼伞由于有肋片加强的缘故,伞衣气动变形较小,一定程度上保证了翼伞的气动特性.  相似文献   

10.
通过在三角翼上游加入干扰圆柱的风洞实验方法,研究了来流干扰对微小型飞行器MAV(Micro Air Vehicle)气动特性的影响.结果表明,在刚性和弹性三角翼顶点上游加入圆柱干扰时,两者均出现缓失速,刚性翼产生缓失速与干扰圆柱尾流关系密切,弹性翼的缓失速不仅与此有关,还与弹性翼的振动有关.无干扰或在机翼顶点加入干扰时,在攻角为4°~18°内弹性翼的升力系数比刚性翼的要大,但升阻比相对要小.由于弹性翼的振动与机翼绕流结构、气动力之间的耦合,弹性翼顶点与翼尖振动的主频随着攻角增大呈规律性的变化,失速攻角附近翼尖的振动主频是其涡脱落频率.   相似文献   

11.
管壳式换热器的一种优化设计   总被引:4,自引:0,他引:4  
换热器的结构优化涉及到多参数的耦合问题.区别于以往优化方法只是将换热器单个性能涉及因素作为目标函数,选取换热器性能涉及因素中的换热体积和换热过程压降损失为优化对象,以湿空气与水热交换作为具体工况条件,分析了管壳式换热器的传热和压降模型,得到了管壳式换热器设计的优化结果,找到了一种综合考虑换热器体积以及换热过程压降损失的换热器结构设计方法.与普通设计方法相比,该方法可以有效减小换热器体积与传热过程压降损失.  相似文献   

12.
直升机滑油换热器的结构优化设计   总被引:4,自引:1,他引:4  
在直升机肋管式滑油换热器的初步热力性能设计计算基础上,应用数值优化原理,对滑油换热器结构的优化设计进行了研究,建立了结构优化程序.该程序以滑油换热器的重量为目标函数,采用正弦法去约束并结合单纯形加速法寻优.实例计算表明,将滑油换热器的热力性能计算程序同结构优化程序结合起来,可以建立自动匹配的换热器设计及优化程序系统.应用该软件,输入设计要求,就可获得既满足性能要求,且重量最轻的肋管式滑油换热器.该软件可推广应用于各种类型肋管式换热器.  相似文献   

13.
使用等热流法瞬态实验测量对流换热系数:基于流动稳定及热平衡条件下对测量表面突加一稳定热流,测出测量表面高低两种窄幅热色液晶的显色时间,根据窄幅液晶的显色温度及其时间通过求解一维半无限大平板非稳态导热方程得到对流换热系数.推导出此方法的误差传递公式,在此基础上分析如何得到准确的对流换热系数.最后给出热流法测对流换热系数的实验流程,并通过自由盘实验验证热流法测对流换热系数的可行性.  相似文献   

14.
为了在化学非平衡流动中获得准确的流场解以及表面热流分布,将总变差减小TVD(Total Variation Diminishing)格式中的熵修正函数,由各向同性分布改为各向异性分布,同时让熵修正函数中的参数与流场中的压力梯度分布相关.将改进后的熵修正函数运用到高超音速化学非平衡绕流流场的数值模拟中,获得了较使用原有熵修正函数更为准确的流场参数和表面热流分布.采用改进的熵修正函数,可以提高壁面附近的粘性分辨率,降低热流计算结果对壁面附近法向网格尺度的敏感性.   相似文献   

15.
  总被引:1,自引:0,他引:1  
提出了一种基于欧拉壁面液膜(EWF)模型的热气防冰腔性能仿真计算的新方法。通过FLUENT软件用户自定义标量(UDS)框架求解水滴控制方程获取三维表面水滴撞击特性。通过对各微元的水收集率、水膜蒸发率等进行质量平衡分析得到了通过该微元的质量流量,并以此作为EWF模型质量流量边界条件进行空气驱动下三维水膜厚度分布的计算,进而建立了防冰表面水膜流动动态模型。在此基础上建立了适用于三维防冰表面的耦合换热模型,通过引入亚松弛因子实现了内外流场、水膜流动及蒙皮导热的松散耦合求解。通过对某发动机短舱模型三维算例计算结果的分析和对比,结果表明所采用的计算方法是合理可信的,可以用于三维防冰腔性能的计算。  相似文献   

16.
含有氧化铝粒子的两相流是固体火箭发动机喷管流场的重要特征.在有限体积方法框架下,采用基于热增量试验数据的粒子壁面反弹模型以及基于粒子轨道的单元内颗粒源(PSIC,Particle Source in Cell)两相流耦合算法,对喷管内两相流流场及粒子撞击产生的壁面热增量进行了计算和分析,研究了氧化铝粒子尺寸对粒子轨道分布和喷管壁面热增量分布的影响规律.研究结果表明:喷管扩张段内粒子稀疏区域范围随粒子直径增加而增大;粒子热增量只分布于喷管收缩段内,粒子直径越大,产生的壁面热增量越强.  相似文献   

17.
基于振动影响流动换热边界层发展的思路,通过实验方法对振动条件下的自然对流换热特性进行研究.实验采用电铃谐振器作为加热膜的激振源,并利用红外测温技术对表面温度场进行了测量.结果表明:振动对自然对流的强化可提高90.7%.在等热流密度条件下,振动能量越大,换热越好;在等振动能量条件下,热流密度越小,换热越强.研究结果为强化表面自然对流换热提供了一种新思路.   相似文献   

18.
采用扩展有限元法(XFEM)和内聚力模型(CZM)相耦合的方法,分析胶接接头胶层内部裂纹扩展、界面脱粘分层现象。采用内聚力单元和内聚力接触描述胶层/板材界面,建立单/双搭接接头有限元模型。预测拉伸载荷下接头的强度性能并与已有试验数据对比分析,验证XFEM-CZM耦合法的可行性及内聚力单元和内聚力接触2种界面建模方法的有效性。模拟裂纹从胶层内部扩展至胶层/板材界面并引起界面脱粘分层的过程,分析其损伤失效机理。讨论初始裂纹长度和界面刚度、强度及应变能释放率对胶接接头强度性能的影响。结果表明:胶接接头强度随初始裂纹长度增加而降低,且在双搭接接头模型中表现更为明显;界面刚度、强度对胶接接头强度影响较大而应变能释放率的影响较小。   相似文献   

19.
从简单的数学模型出发,利用直观的温度及浓度分布假设,对生物体冻结过程中的传热、传质进行了理论分析,并将结果与精确解及测量值进行了比较。其解法简单,省去了以往的有限差分求解的繁琐的计算过程,并且计算结果与试验数据吻合得很好。  相似文献   

20.
This paper presents a design of solar thermal propulsion (STP) system for microsatellite with liquid ammonia as propellant. The system was equipped with two concentrators, which were respectively placed in the tank and thrust chamber for propellant supply and heating. A platelet heat exchanger was adopted to heat the propellant in the chamber, and the fluid–solid coupling effect between the wall and the gas was considered. Meanwhile, the effects of satellite mass, initial orbit, nozzle size and target temperature on the performance of STP system were analyzed. The results show that for microsatellites with a total mass of 100 kg, the STP system can fully heat the propellant to more than 2050 K, generate an intermittent thrust of about 26 N, and enable the satellite to obtain a velocity increment of more than 1470 m/s within 19 days, consuming only 42 kg of propellant, which can directly meet the transfer mission from the geostationary transfer orbit (GTO) to the geostationary orbit (GEO). The maximum velocity increment could reach more than 1950 m/s when the propellant was completely consumed; Changing the mass and initial orbit of the satellite will not affect the thrust and specific impulse. Satellites with smaller mass will spend less time and propellant during orbit transfer. The lower is the perigee height of the initial orbit, the greater is the propellant consumption, while the shorter is the time of orbit transfer; The reduction of nozzle throat size and target temperature will lead to the increase of specific impulse and the decrease of orbital transfer time, but the reduction of thrust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号