首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 234 毫秒
1.
针对机动目标的末制导拦截问题,设计了一种带攻击角度约束的非奇异快速终端滑模固定时间收敛制导律。与有限时间收敛终端滑模制导律相比,所提制导律能够确保弹目视线(LOS)角和弹目视线角速率在固定时间内是收敛的,并且收敛时间是独立于制导系统初始条件的,可以根据制导律参数预先给定。构造了一种新型的非奇异快速终端滑模面,有效解决了奇异性问题,同时通过合理地改变滑模面与弹目视线角跟踪误差的趋近律指数,使得制导系统比现有的固定时间收敛控制具有更快的收敛速率。此外,设计了一种自适应律,针对目标机动引起的未知扰动进行估计,使得制导律的设计无需预先知道任何关于目标机动的信息。通过仿真实验验证了所提制导律能够使导弹成功拦截机动目标,并且与现有制导律相比,具有更快的系统收敛速率、更高的拦截精度及更短的拦截时间。   相似文献   

2.
考虑导弹自动驾驶仪动态特性的新型制导律   总被引:2,自引:1,他引:1  
针对拦截空中飞行目标需要满足零脱靶量和攻击角约束提高导弹制导性能等问题,首先,利用考虑噪声干扰的扩张状态观测器对目标加速度进行估计,其次,改进一种非奇异终端滑模面,将自动驾驶仪视为理想环节,然后,基于终端滑模控制理论和有限时间收敛理论推导一种滑模制导律,最后,考虑自动驾驶仪二阶动态特性,将得到的滑模制导律结合动态面控制法提出一种新型制导律。分别以不同的攻击角对机动飞行和匀速飞行的目标进行拦截,大量仿真表明,所提制导律具有良好的制导性能,能够保证导弹在零脱靶量击中目标的同时达到期望攻击角。  相似文献   

3.
针对某些导弹在对目标进行打击时需要满足零脱靶量和攻击角度约束的要求,首先基于终端滑模控制和有限时间控制理论,改进了一种快速收敛的非奇异终端滑模函数,用于设计滑模面,结合自适应指数趋近律,提出了一种自适应非奇异终端滑模控制方法,解决了传统终端滑模控制中存在的奇异问题,并使状态变量在有限时间内快速收敛到平衡点。然后将所提方法用于导引律的设计,提出了一种带攻击角度约束的自适应非奇异和有限时间收敛导引律,实现了导弹对脱靶量和攻击角度约束的要求;采用有限时间控制理论对该导引律的收敛特性进行了分析,证明了制导系统状态的全局有限时间快速收敛特性。与传统的非奇异终端滑模导引律相比,本文所提导引律能够在更短的时间内以更小的脱靶量和更高精度的攻击角度对目标实施打击。最后进行了大量的对比仿真实验,仿真结果验证了所提导引律的有效性。   相似文献   

4.
基于快速自适应超螺旋算法的制导律   总被引:1,自引:1,他引:0  
针对地空导弹攻击机动目标的制导律设计问题,提出了一种有限时间稳定的新型二阶滑模制导律。在弹目相对运动模型的基础上,将制导问题转化为一阶系统的控制问题。在超螺旋(ST)算法中引入线性项和一种新的参数自适应律,提出了一种快速自适应超螺旋(FAST)算法,该算法不需要已知系统不确定性的边界且收敛速度较快。利用类二次型Lyapunov函数证明了系统有限时间稳定性,给出了收敛时间估计公式。通过与自适应滑模制导律、ST制导律和光滑二阶滑模制导律的仿真对比,验证了所设计的制导律在保证制导精度的同时,能够在有限时间内提高滑模变量的收敛速度,并且避免了参数选择困难的问题。   相似文献   

5.
带有攻击角约束的无抖振滑模制导律设计   总被引:1,自引:1,他引:0  
考虑到自动驾驶仪的动态延迟问题和攻击角度约束问题,根据寻的导弹拦截逃逸机动目标设计了一种新的无抖振的滑模制导律。首先,对视线角进行三次微分可得到制导系统的状态方程;其次,根据制导系统状态方程设计滑模算法,通过选取满阶终端滑模(TSM)滑动流形避免了TSM的奇异问题,在控制输入的导数项中引入切换函数项进行扰动补偿,有效消除了控制器中的抖振现象;最后,将提出的控制算法应用到制导律的设计中,保证了视线角在有限时间内收敛到期望值。通过与现存的有限时间制导律对比,本文设计的制导律不仅能够补偿自动驾驶仪的动态延迟而且能够有效消除控制器中的抖振现象。数字仿真验证了所提出的控制算法在制导律设计中的有效性。   相似文献   

6.
基于扩张状态观测器的导弹滑模制导律   总被引:1,自引:0,他引:1  
针对导弹拦截机动目标的问题,基于扩张状态观测器(ESO,Extended State Observer)设计了一种全新的导弹滑模制导律.考虑拦截时的弹目相对运动关系,通过ESO对目标加速度进行实时的观测和动态补偿,有效地解决了导弹拦截末端所需过载过大的问题,使导弹能够以更小的脱靶量拦截目标.同时在仿真中考虑自动驾驶仪的二阶动态特性,分别以不同的初始航迹角对周期性机动目标和非周期性机动目标进行拦截打击仿真,并与基于有限时间收敛理论提出的滑模制导律对迎击拦截、追击拦截和前向拦截3种方式进行仿真对比,仿真结果表明了基于ESO的滑模制导律在拦截末制导过程中的鲁棒性和优越性.   相似文献   

7.
根据多模态滑模概念,提出了一种快速非奇异终端滑模控制方法(FNTSM,Fast Nonsingular Terminal Sliding Mode),实现了非奇异终端滑模控制的全局快速收敛.多模态滑模通过设计分段切换函数,实现多个滑动模态.FNTSM的切换函数由线性滑模的切换函数和非奇异终端滑模的切换函数连接而成.当系统状态远离平衡点时,系统运行于线性滑动模态;当系统状态靠近平衡点时,系统运行于非奇异终端滑动模态.设计了切换型控制律,保证了系统的到达时间和滑动时间都是有限的.数值仿真表明:FNTSM控制与非奇异终端滑模控制、线性滑模控制相比具有快速性优点.   相似文献   

8.
    
针对大气层外用于拦截目标动能拦截器(KKV)的制导律设计问题,采用非线性干扰观测器(NDO)及滑模变结构控制思想设计了一种基于碰撞航线的制导律.通过控制导弹攻角,使导弹的速度方向始终指向预期碰撞点,并利用NDO对目标加速度进行有效估计及动态补偿,降低了导弹所需的过载,并提高了命中时的速度.同时,分别从拦截轨迹、可拦截目标区域及拦截目标速度范围对机动目标进行拦截仿真,并与以零化视线角速率为目标设计的有限时间收敛制导律对比,仿真结果表明对于动能拦截器采用基于碰撞航线的滑模制导律具有更好的制导性能.  相似文献   

9.
针对多枚高超声速飞行器在俯冲段协同攻击一个固定目标或慢速移动目标的问题,基于有限时间理论设计了带有视线(LOS)高低角和视线方位角约束的协同制导律。首先,将俯冲段制导过程划分为横向和纵向2个方向;其次,在纵向视线方向,将所有参与攻击的飞行器与邻居间的相对位置差值和视线速度差值作为误差项引入制导律;最后,为实现横向和纵向的视线角收敛,设计有限时间滑模制导律,并设计自适应干扰观测器估计时变扰动的上界。通过Lyapunov函数对提出的协同制导律给出详细的有限时间收敛证明,仿真实验结果验证了所设计协同制导律的正确性和有效性。   相似文献   

10.
  总被引:1,自引:1,他引:0  
针对导弹对地面静止目标的打击问题,提出了一种三维有限时间滑模制导律。利用Lyapunov方法证明了该制导律能够控制导弹以期望的纵向和侧向碰撞角对目标进行精确打击。该方法具有以下4点优势:无需对系统模型作解耦或线性化处理,可以同时对纵向和侧向碰撞角进行约束,可以得到解析的制导指令,闭环系统对外部扰动和参数不确定性具有不敏感特性。仿真结果验证了该制导方法能够保证较高的终端精度和较强的鲁棒性。  相似文献   

11.
基于前向补偿的再入飞行器制导控制一体化设计   总被引:1,自引:1,他引:0       下载免费PDF全文
针对再入飞行器的制导控制问题,提出了一种基于前向补偿的滑模制导控制一体化设计方法。首先,建立了面向控制的再入飞行器制导控制一体化控制模型。其次,设计了非线性干扰观测器对未知干扰进行实时观测,基于反演法和滑模控制方法设计了传统的一体化控制律。在此基础上,改进了滑动模态设计消除系统间的耦合,设计了具有前向补偿的再入飞行器制导控制一体化控制系统,使得整个制导系统是有限时间稳定的。最后,非线性六自由度数字仿真结果表明,相对于传统一体化设计方法和分离设计方法,该方法具有更好的制导性能和鲁棒性。  相似文献   

12.
基于改进Terminal滑模的导弹大角度机动控制   总被引:1,自引:0,他引:1  
针对空空导弹攻击载机尾后目标的大角度机动控制问题,提出一种基于复合滑模面与扰动抑制机制的非奇异Terminal滑模(NTSM)控制器设计方法。首先建立了包含有气动不确定性的直接力控制系统(RCS)空空导弹数学模型,并采用传统NTSM控制方法设计了导弹姿态控制律。然后,在此基础上,针对大角度机动时初始状态远离平衡点的问题,设计了一种复合滑模面以加快系统收敛速度。为解决大攻角下的气动不确定性导致的严重抖振问题,引入了扩张状态观测器(ESO)技术,实现了系统不确定量的在线估计与补偿。对所提方法的稳定性分析证明了系统的有限时间收敛特性。最后,将设计的控制器应用于空空导弹的敏捷转弯大角度机动控制,仿真结果表明新方法可以加快系统收敛速度,并能有效削弱未建模动力学造成的抖振现象。   相似文献   

13.
    
针对导弹拦截机动目标时要求限制终端攻击角度的问题,提出了一种基于扩张干扰观测器(EDO)的有限时间收敛制导律.考虑拦截时弹目相对运动关系,将导弹速度的时变、未知的运动目标加速度视为扰动,采用EDO对干扰进行实时的观测和补偿.通过引入快速跟踪微分器解决制导律中所需期望视线角速率无法直接获取的问题.同时,在制导律性能分析中引入了滑模捕捉能力的概念,分别对不同攻击场景和不同运动形式的机动目标进行拦截仿真,结果表明该制导律有良好的制导性能和鲁棒性,并与其他的制导律进行仿真对比,其所需过载小,脱靶量小,易于工程实现.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号