首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
研究了添加硼、硅、碳的 γ-TiAl基自生复相材料的显微组织特征.在压力4?GPa、温度1?273?K、反应合成时间60?min的条件下,通过粉末间的原位置换放热反应制备了样品.研究发现:Ti-Al-B三元合金含有TiAl相、Ti3Al相和TiB2相;Ti-Al-Si三元合金含有TiAl相、Ti3Al相和Ti5(Al,Si)3相;Ti-Al-C三元合金含有TiAl相和Ti3AlC相;Ti-Al-B-Si四元合金含有TiAl相、Ti3Al相、TiB2相和Ti5(Al,Si)3相;Ti-Al-B-C四元合金含有TiAl相、Ti3AlC相和TiB2相;Ti-Al-B-Si-C五元合金含有TiAl相、Ti3AlC相、TiB2相和Ti5(Al,Si)3相,其组织非常相似于预先设计的组织.在此基础上就不同相对性能的影响进行了分析.  相似文献   

2.
LY12cz铝合金晶间腐蚀模拟试验研究   总被引:9,自引:0,他引:9  
用金属间化合物 θ(CuAl2)、S(Al2CuMg)、MnAl6与纯Al(L1)组成多电极体系,以模拟LY12cz合金的晶界区.通过电化学测试、SEM和能谱分析等方法研究了该合金晶间腐蚀机理.证实其晶间腐蚀是由沿晶界偏析的强化相与贫Cu区所组成的多电极体系引起的.在含Cl离子的中性溶液中,S相是导致晶间腐蚀的主要阳极相.S相首先发生阳极溶解,随后,贫铜区、MnAl6相逐步随S相一起溶解.以这种方式沿晶界形成了阳极溶解通道,导致晶间腐蚀.  相似文献   

3.
目前显式构造降阶H控制器的算法仅适用于奇异H控制情形,为对非奇异情形使用这些算法,将广义对象的矩阵 A 分为 A 0和 Δ A 2部分,并且使( A 0, B 1, C 2, D 21)或 ( A 0, B 2, C 1, D 12)含有不稳定零点,从而可以使用构造降阶控制器的算法得到可用于构造降阶控制器的解( X , Y ).矩阵 A 的这种改变将使得对象的3个线性矩阵不等式中的1个发生改变,因此该解( X , Y )必须在 A 未改变时,代入发生改变的那个不等式并判断其是否成立,若成立则该解( X , Y )可用于对广义对象构造降阶控制器.数值算例表明了该算法的有效性.  相似文献   

4.
采用Sn63Pb37钎料对Au60AgCu合金进行钎焊试验.对钎焊接头的微观组织、显微硬度、化合物相成分、力学性能及断口形貌进行了分析,并探讨了界面化合物相对接头脆性的影响.结果表明:Au60AgCu合金接头化合物主要由AuSn2,AuSn4和Ag3Sn组成.金属间化合物的硬度很高,其厚度随钎焊温度的升高及保温时间的增长而增厚.钎焊接头剪切性能测试表明,断裂发生在金属间化合物层,断口形貌为脆性断裂.  相似文献   

5.
PEEK/ZrO2固体合金的探索研究   总被引:4,自引:0,他引:4  
在聚醚醚酮(PEEK)玻璃化转变温度以下,用外动式高能旋转球磨机使PEEK和二氧化锆(ZrO2)混合物反复变形、断裂和结合,并形成新的相,即形成PEEK/ZrO2固体合金.通过扫描电镜(SEM)、差示扫描量热仪(DSC)、红外光谱(FT-IR)和动态热力学分析装置(DMTA)对PEEK/ZrO2=1/2和2/1固体合金的结构及性能进行研究;并与纯PEEK对比,探讨PEEK与ZrO2形成固体合金的可能性;讨论固体合金化工艺对PEEK/ZrO2固体合金性能的影响,分析PEEK/ZrO2固体合金的形成机理.  相似文献   

6.
应用经验电子理论中的键距差法计算了激光熔化沉积MoO2增强 γ /NiMo合金中两种化合物即MoO2和NiMo的价电子结构,研究了价电子结构与两种化合物的硬度、强度和熔点差异的关系,并用实验测量结果进行了验证.表明价电子结构中的共价电子总数与总价电子数之比可以作为衡量MoO2和NiMo强度高低的依据;价电子结构中最强键的理论键距可以作为衡量MoO2和NiMo熔点高低的依据;但价电子结构中最强共价键上的共价电子对数不能单独作为衡量MoO2和NiMo硬度高低的依据.  相似文献   

7.
释放不同化学物质对电离层扰动的比较   总被引:3,自引:2,他引:1  
在电离层F区释放氢(H2)、水(H2O)、二氧化碳(CO2)、六氟化硫(SF6)、三氟溴甲烷(CF3Br)、羰基镍(Ni(CO)4)可以损耗局域等离子体电子密度,形成电子空洞,电离层电子密度的改变主要取决于释放物质的气态分子与电离层之间的离子化学反应.在电离层人工主动扰动实验中,应根据发射成本和扰动效果对释放物质进行选择.通过热力学原理和有限元模拟方法计算比较了上述6种物质对电离层的扰动影响.计算结果表明,6种物质中水的气化率最低,约为19%,其余5种物质都在60%以上,选择密度小的物质,例如H2和CO2,可以有效降低发射成本.另外,扩散较慢且化学反应较快的物质,例如SF6和Ni(CO)4,能够使得电离层电子密度减少得更多,并且受扰动区域更广、持续时间更长.  相似文献   

8.
对粉末冶金制备的Ti-46Al-2Cr-2Nb-(B,W)(at%)合金在1 280 ℃进行直接热处理,通过3种不同冷却速度获得了不同的双态组织.当冷却速度为50℃/min时,组织中的α晶粒通过析出γ片形成片层团,获得主要由片层团和γ相组成的双态组织,组织中过高片层体积分数导致拉伸延长率不高;而冷却速度为10℃/min 和5℃/min时,形成了主要由α2晶粒和γ相组成的双相组织,α2晶粒的存在进一步降低了材料室温延长率.  相似文献   

9.
为研究Ti合金中常用的基体强化元素W对合金抗氧化性的作用,利用第一性原理方法计算了W掺杂对Ti合金氧化产物金红石TiO2中氧空位形成能的影响。计算发现,W可以显著增大其近邻位置的氧空位的形成能,使其增大将近0.7 eV,这将有效抑制氧空位的产生以及环境中氧的渗透,对Ti合金的抗氧化性是有益的。同时研究了2个氧空位组成的不同构型的空位对,发现W同样可以增大氧空位对的形成能,但增加的数值平均到每个氧空位只有0.2 eV,即随着氧化的加剧和氧空位浓度的增加,W对抗氧化性能提高的效果减弱。电子态密度分析表明,对于不同构型的氧空位对,体系内的未配对电子分布在不同的能级水平,这导致了不同的空位形成能。  相似文献   

10.
Si对TiAl合金高温抗氧化性能的影响   总被引:4,自引:0,他引:4  
利用X射线衍射、扫描电镜、能谱仪等手段研究了TiAl-Si(原子数分数为0~20%)合金在1 173 K大气中24 h的恒温氧化.结果表明:Si元素可以有效地提高TiAl合金的高温抗氧化性能;随着Si含量的增加,氧化膜厚度依次减薄,TiO2的含量逐渐减少,Al2O3的含量逐渐增加,添加到10%左右时就有连续致密的Al2O3保护膜形成;Si在0~20%的添加过程中并没发现Si的氧化物生成.分析表明:Si对抗氧化性能的贡献可归结于Si与Ti有很好的亲和力,可以有效地降低Ti离子的活度、阻碍Ti离子的向外扩散, 相对来说增强了Al离子的活度,促进连续致密的Al2O3保护膜生成.   相似文献   

11.
钒(V)是核聚变反应堆结构材料的重要候选材料。实验表明杂质氧(O)会对V的结构和力学性能产生极大的影响。采用基于密度泛函理论的第一性原理方法研究了O在V中热力学稳定性、扩散特性以及与缺陷空位的相互作用。O在V中易于占据八面体间隙位,其溶解能为-4.942 eV。O在间隙位的最佳扩散路径为八面体间隙位→四面体间隙位→八面体间隙位,扩散激活能为1.728 eV,在此基础上对不同温度下的扩散系数在文中给出了详细分析。O在V中与空位存在很强的吸引相互作用,1个O原子和2个O原子被空位捕获时的捕获能分别为-0.484 eV和-0.510 eV。当O原子的数量超过3,其捕获能变为正值0.382 eV,因此单空位最多能够结合2个O原子,这意味着"O_1-vacancy"和"O_2-vacancy"团簇在V中很容易形成。这些研究结果将对V基合金在核聚变反应堆中的最终应用具有一定的参考价值。  相似文献   

12.
The magnetic field structure and the spatial characteristics of the large-scale currents in the magnetospheric tail were studied during quiet and moderately disturbed geomagnetic conditions in 2009. The magnetic field of the currents other than the tail current was calculated in terms of a paraboloid model of the Earth’s magnetosphere, A2000, and was subtracted from measurements. It was found on the base of obtained tail current magnetic field radial distribution that the inner edge of the tail current sheet is located in the night side magnetosphere, at distances of about 10 RE and of about 7 RE during quiet and disturbed periods respectively. During the disturbance of February 14, 2009 (Dstmin ∼ −35 nT), the Bx and the Bz component of the tail current magnetic field near its inner edge were about 60 nT, and −60 nT that means that strong cross-tail current have been developed. The tail current parameters at different time moments during February 14, 2009 have been estimated. Solar wind conditions during this event were consistent with those during moderate magnetic storms with minimum Dst of about −100 nT. However, the magnetospheric current systems (magnetopause and cross-tail currents) were located at larger geocentric distances than typical during the 2009 extremely quiet epoch and did not provide the expected Dst magnitude. Very small disturbance on the Earth’s surface was detected consistent with an “inflated” magnetosphere.  相似文献   

13.
An uniform out-of-plane magnetic field component By0 is added to the equilibrium Harris sheet with plasma β = 0.5 and Lc = 0.5di (where Lc is the half-width of the equilibrium current layer and di is the ion inertial length). Driven by the continuous boundary inflows, the magnetic reconnections with the guide field By0/B0 ranging from 0 to 4.0 are investigated using a 2.5D Hall magnetohydro-dynamic (MHD) code developed from a multi-step implicit scheme. The features of the reconnection field are substantially altered in the presence of the guide field. The openness of the magnetic separatrix angle is slightly reduced and the anti-symmetric quadrupolar structure of By field and the symmetric distribution of plasma pressure P are replaced by an asymmetric By four-wing structure and an asymmetric P plot as a non-zero By0 is added. The decoupling of electrons and ions also occurs near the X line in the case with a finite By0, but the effect of initial By0 on the electron flow is greater than that on the ion flow. The reconnection rates at the X-line drops from 0.151 to 0.06, namely, ∂A/∂t is reduced by a factor of 2.5 as By0/B0 increases from 0 to 4.0. The reduction of reconnection rate might be related to the reducing openness of reconnection layer with the increasing By0.  相似文献   

14.
First comparison of in situ density fluctuations measured by the DEMETER satellite with ground based GPS receiver measurements at the equatorial anomaly station Bhopal (geographic coordinates (23.2°N, 77.6°E); geomagnetic coordinates (14.29°N, 151.12°E)) for the low solar activity year 2005, are presented in this paper. Calculation of the diurnal maximum of the strength of the equatorial electrojet, which can serve as precursor to ionospheric scintillations in the anomaly region is also done. The Langmuir Probe experiment and Plasma Analyzer onboard DEMETER measure the electron and ion densities respectively. Irregularities in electron density distribution cause scintillations on transionospheric links and there exists a close relationship between an irregularity and scintillation. In 40% of the cases, DEMETER detects the irregularity structures (dNe/Ne ? 5% and dNi/Ni (O+) ? 5%) and GPS L band scintillations (S4 ? 0.2) are also observed around the same time, for the low solar activity period. It is found that maximum irregularity intensity is obtained in the geomagnetic latitude range of 10–20° for both electron density and ion density. As the GPS signals pass through this irregularity structure, scintillations are recorded by the GPS receiver installed at the equatorial anomaly station, Bhopal it is interesting to note that in situ density fluctuations observed on magnetic flux tubes that pass over Bhopal can be used as indicator of ionospheric scintillations at that site. Many cases of density fluctuations and associated scintillations have been observed during the descending low solar activity period. The percentage occurrence of density irregularities and scintillations shows good correspondence with diurnal maximum of the strength of electrojet, however this varies with different seasons with maximum correspondence in summer (up to 66%) followed by equinox (up to 50%) and winter (up to 46%). Also, there is a threshold value of EEJ strength to produce density irregularities ((dNe/Ne)max ? 5%) and for moderate to strong scintillations (S4 ? 0.3) to occur. For winter this value is found to be ∼40 nT whereas for equinox and summer it is around 50 nT.  相似文献   

15.
The SOHO/MDI data provide the uniform time series of the synoptic magnetic maps which cover the period of the cycle 23 and the beginning of the cycle 24. It is very interesting period because of the long and deep solar minimum between the cycles 23 and 24. Synoptic structure of the solar magnetic field shows variability during solar cycles. It is known that the magnetic activity contributes to the solar irradiance. The axisymmetrical distribution of the magnetic flux (Fig. 3c) is closely associated with the ‘butterfly’ diagram in the EUV emission (Benevolenskaya et al., 2001). And, also, the magnetic field (B) shows the non-uniform distributions of the solar activity with longitude, so-called ‘active zones’, and ‘coronal holes’ in the mid-latitude. Polar coronal holes are forming after the solar maxima and they persist during the solar minima. SOHO/EIT data in the emission of Fe XII (195 Å) could be a proxy for the coronal holes tracking. The active longitudinal zones or active longitude exist due to the reappearance of the activity and it is clearly seen in the synoptic structure of the solar cycle. On the descending branch of the solar cycle 23 active zones are less pronounced comparing with previous cycles 20, 21 and 22. Moreover, the weak polar magnetic field precedes the long and deep solar minimum. In this paper we have discussed the development of solar cycles 23 and 24 in details.  相似文献   

16.
The aggregates formed in low gravity are generally fractals. The fractal dimensions and the site growth probability measures of the resulting fractal structures strongly depend on the properties of the forces that cause the aggregation. Using some approximations, we solved the equation of motion and obtained the relation giving the particles separation as a function of time. The electric force between two charged particles and the magnetic force between two particles with a magnetic moment were considered. The two relations are different and it is shown that one can identify and separate these two interactions by analysing the recording of the aggregation. The apparatus used to record the aggregation has a resolution in the order of one micrometer per pixel and has the possibility of recording simultaneously two views at right angles. From a three dimensional recording of an aggregation, it will be possible to obtain the product of the two charges or magnetic moments causing the aggregation.  相似文献   

17.
We investigated the diurnal, seasonal and latitudinal variations of ion density Ni over the Indian low and equatorial topside ionosphere within 17.5°S to 17.5°N magnetic latitudes by combining the data from SROSS C2 and ROCSAT 1 for the 9 year period from 1995 to 2003 during solar cycle 23. The diurnal maximum density is found in the local noon or in the afternoon hours and the minimum occurs in the pre sunrise hours. The density is higher during the equinoxes as compared to that in the June and December solstice. The local time spread of the daytime maximum ion density increases with increase in solar activity. A north south asymmetry with higher ion density over northern hemisphere in the June solstice and over southern hemisphere in December solstice has been observed in moderate and high solar activity years. The crest to crest distance increases with increase in solar flux. Ion density bears a nonlinear relationship with F10.7 cm solar flux and EUV flux in general. The density increases linearly with solar flux up to ∼150 sfu (1 sfu = 10−22Wm−2Hz−1) and EUV flux up to ∼50 units (109 photons cm−2 s−1). But beyond this the density saturates. Inverse saturation and linear relationship have been observed in some season or latitude also. Inter-comparison of the three solar activity indices F10.7 cm flux, EUV flux and F10.7P (= (F10.7 + F10.7A)/2, where F10.7A is the 81 day running average value of F10.7) shows that the ion density correlates better with F10.7P and F10.7 cm fluxes. The annual average daytime total ion density from 1995 to 2003 follows a hysteresis loop as the solar cycle reverses. The ion density at 500 km over the Indian longitude sector as obtained by the international reference ionosphere is in general lower than the measured densities during moderate and high solar activity years. In low solar activity years the model densities are equal or higher than measured densities. The IRI EIA peaks are symmetric (±10°) in equinox while densities are higher at 10°N in June solstice and at 10°S in the December solstice. The model density follows F10.7 linearly up to about F10.7 > ∼150 sfu and then saturates.  相似文献   

18.
Recently a new model for explaining the observations of preferential heating of heavy ions in the polar solar corona was proposed ( and ). In that model the ion energization mechanism is the ion reflection off supercritical quasi-perpendicular collisionless shocks in the corona and the subsequent acceleration by the motional electric field E = −V × B/c. The mechanism of heavy ion reflection is based on ion gyration in the magnetic overshoot of the shock. The acceleration due to the motional electric field is perpendicular to the magnetic field, giving rise to large temperature anisotropy with T ? T, in agreement with SoHO observations. Such a model is tested here by means of a one dimensional test particle simulation where ions are launched toward electric and magnetic profiles representing the shock transition. We study the dynamics of O5+, as representative of coronal heavy ions for Alfvénic Mach numbers of 2–4, as appropriate to solar corona. It is found that O5+ ions are easily reflected and gain more than mass proportional energy with respect to protons.  相似文献   

19.
The analysis of energetic particles and magnetic field measurements from the Ulysses spacecraft has shown that in a series of events, the energy density contained in the suprathermal tail particle distribution is comparable to or larger than that of the magnetic field, creating conditions of high-beta plasma. In this work we analyze periods of high-beta suprathermal plasma occurrences (βep > 1) in interplanetary space, using the ratio (βep) of the energetic particle (20 keV to ∼5 MeV) and magnetic field energy densities from measurements covering the entire Ulysses mission lifetime (1990–2009) in order to reveal new or to reconfirm some recently defined interesting characteristics. The main key-results of the work are summarized as follows: (i) we verify that high-beta events are detected within well identified regions corresponding mainly to the vicinity of shock surfaces and magnetic structures, and associated with energetic particle intensity enhancements due to (a) reacceleration at shock-fronts and (b) unusually large magnetic field depressions. (ii) We define three considerable features for the high-beta events, concentrated on the next points: (a) there is an appreciable solar-activity influence on the high-beta events, during the maximum and middle solar-cycle phase, (b) the annual peak magnitude and the number of occurrences of high events are well correlated with the sunspot number, (c) the high-beta suprathermal plasma events present a spatial distribution in heliographic latitudes (HL) up to ∼±80°, and a specific important concentration on the low (−25° ? HL < −6°, 6° < HL ? 25°) and median (−45° ? HL < −25°, 25° < HL ? 45°) latitudes. We also reconfirm by a statistical analysis the results of Marhavilas and Sarris (2011), that the high-beta suprathermal plasma (βep > 1) events are characterized by a very large parameter βep (up to 1732.5), a great total duration (406 days) and a large percentage of the Ulysses-mission lifetime (which is equal to 6.34% of the total duration with usable measurements, and 11.3% of the duration in presence of suprathermal particles events).  相似文献   

20.
We study energetic particle transport in a magnetic field configuration which models the solar wind magnetic turbulence plus the background field. A power-law Fourier amplitude is used for the fully 3D turbulence model, and in order to model anisotropic turbulence, the constant amplitude surfaces in k space are ellipsoids. The turbulence correlation lengths parallel (perpendicular) to the background magnetic field l (l) are varied in a wide range, and proton energies from 1 MeV to 10 GeV are assumed. Considering propagation on a distance corresponding to 1 AU, it is found that transport parallel and perpendicular to the background field heavily depends on the turbulence anisotropy, that is on the ratio l/l. The spatial distribution of energetic particle follows the shape of magnetic flux tube up to about 10 MeV, while for larger energies the structure of the magnetic flux tube is progressively washed out. The scatterplots of particle distribution show intermittent, non Gaussian structures for l  l (quasi slab turbulence), while a more diffusive, Gaussian structure is obtained for l  l (quasi 2D turbulence). The long time behavior of transport shows that anomalous (subdiffusive perpendicular and superdiffusive parallel) transport regimes are obtained for l  l, while Gaussian diffusive transport is obtained for both l  l and the isotropic turbulence case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号