首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
基于动态逆的高超声速飞行器鲁棒自适应控制   总被引:3,自引:1,他引:2  
针对高超声速飞行器运动学模型具有高度非线性、多变量耦合及参数不确定等特点,提出了一种基于非线性动态逆的控制系统鲁棒自适应控制器设计方法.该方法将飞行器的运动方程分成速度子系统和高度子系统,利用控制输入的功能分配,并结合虚拟控制指令设计与非线性动态逆技术,实现速度和高度的稳定跟踪.为消除系统中模型不确定性和外界干扰的影响,采用鲁棒自适应滑模控制策略进行补偿.仿真结果表明:所提出的控制器设计方法不仅满足飞行器速度与高度跟踪性能的要求,且对模型不确定性和外干扰具有一定的鲁棒性.   相似文献   

2.
针对大型捆绑火箭空间模态参数不确定性较大的特点,建立了大型捆绑运载火箭姿态动力学模型,提出了基于反步的自适应增广控制方法,设计了反步控制律,分析了自适应增广控制的机理,并针对弹性参数不确定性进行了仿真。理论分析和仿真结果表明,所提出的基于反步的自适应增广控制对于空间模态参数的不确定性具有很强的适应性。  相似文献   

3.
导弹在实际飞行中存在气动参数不确定、执行机构故障等问题,从而对导弹飞行控制系统稳定性与操控能力造成严重影响。为此,设计一种增量式自适应容错控制方法,在实现导弹安全控制的同时,兼顾姿态控制算法时效性与可靠性。建立面向控制的三通道耦合姿态动力学模型;考虑系统不确定性和执行机构故障,基于增量式动态逆方法设计导弹被动容错控制律;基于自适应滑模控制与增量式动态逆方法,设计增量式动态逆自适应容错控制律,并对系统残差进行分析比较;通过某典型全弹道姿态跟踪任务,验证舵面故障下的姿态跟踪特性。仿真结果表明:所提方法在故障未知的情况下,能够保证飞行控制系统的鲁棒性与容错能力,实现导弹的安全可靠控制。   相似文献   

4.
针对带有分布式压电陶瓷执行机构的挠性航天器姿态机动与主动振动控制问题,提出了一种退步直接自适应一体化控制方法.首先,建立了挠性航天器姿态机动与主动振动控制的模型,并分析了动力学子系统的近似严格正实性;然后,采用退步直接自适应控制方法,设计了挠性航天器的姿态机动主动振动控制器,并证明了控制闭环系统的稳定性;最后,进行了不同仿真条件下的数学仿真验证.理论分析与数学仿真结果表明,该控制方法不依赖航天器参数,对系统参数不确定性具有强鲁棒性,能有效抑制挠性附件的振动,对挠性航天器的控制是有效的.  相似文献   

5.
飞行器航迹倾角的自适应动态面控制   总被引:3,自引:0,他引:3  
针对飞行器纵向模型具有参数不确定性和外界干扰的特点,提出一种飞行器航迹倾角的自适应动态面控制方法.动态面控制方法通过引入一阶低通滤波器避免了传统反演设计存在的"微分爆炸"现象,采用自适应律对模型未知参数进行在线估计,并利用非线性阻尼项克服外界干扰.通过Lyapunov方法证明得出闭环系统半全局一致稳定,跟踪误差可通过调节控制器参数达到任意小.仿真结果表明:该方法能在简化控制设计过程的同时保证航迹倾角跟踪上预定轨迹,控制系统具有较强的自适应能力且对外界干扰具有一定的鲁棒性.  相似文献   

6.
基于比例分配的过驱动碟形飞行器滑模控制   总被引:1,自引:0,他引:1  
为了避免一些执行机构提前出现饱和,针对具有位置约束的过驱动碟形飞行器,按照执行机构的约束范围,提出了一种比例分配策略.基于该策略,可以使双输入系统简化成单输入系统,并避免有执行机构提前出现饱和.考虑执行机构具有一阶动态特性和系统气动参数的不确定性,设计了滑模控制律.通过比例分配和伪逆分配的比较,得出了一种确定伪逆分配权矩阵的方法.仿真结果表明了该方法的正确性和有效性.  相似文献   

7.
讨论了一种基于径向基函数(RBF,Radial Basic Function)神经网络的导弹滑模动态逆控制律.导弹的基本控制律采用动态逆方法设计,对慢回路设计神经网络滑模控制器以补偿整个控制系统的不确定性.即用RBF神经网络逼近导弹慢模态不确定性的数学模型,并将逼近误差引入到网络权值的调节律以改善系统的动态性能;滑模控制器用于减弱模型不确定性及神经网络的逼近误差对跟踪的影响.所设计的控制器不仅保证了闭环系统的稳定性,而且使模型不确定性及神经网络的逼近误差对跟踪的影响减小到给定的性能指标.最后通过仿真分析,验证了该方法的有效性.   相似文献   

8.
高超声速飞行器离散模糊自适应控制   总被引:2,自引:0,他引:2  
根据高超声速飞行器的欧拉近似离散模型,提出基于Back-stepping的模糊离散自适应控制器设计方法.结合模糊自适应控制和反馈线性化的方法,Back-stepping设计的每一步虚拟/实际控制量对系统非匹配的不确定性都能进行较好补偿.稳定性分析表明,该控制方法能够保证系统跟踪误差和模糊自适应参数误差是一致终值有界的.仿真使用了高超声速飞行器的纵向模型对算法进行了验证,得到了满意的控制效果.  相似文献   

9.
针对空间机器人系统捕获非合作目标后由于质量特性参数和动量突变影响导致的组合体系统失稳问题,提出了一种基于系统动力学模型的抗干扰自适应控制方法。利用拉格朗日方法对系统进行动力学建模,通过冲击动力学建模分析得到了捕获目标后组合体系统的初始状态;基于系统动力学模型设计了线性反馈控制方法,考虑组合体质量特性参数不确定性以及外在干扰不确定性,对组合体系统动力学模型进行了不确定参数线性化,设计了参数自适应线性反馈控制方法;最后以平面三关节机械臂系统捕获旋转目标为例进行了仿真计算。组合体系统的运动状态量趋于期望值,速度级状态变量误差量级控制在10-4以下,位置级状态变量误差量级控制在10-3以下,说明该控制方法可以很好地保持捕获目标后组合体系统的稳定。  相似文献   

10.
高超声速巡航飞行器在线自适应反馈控制设计   总被引:1,自引:1,他引:0  
由于飞行器模型的强非线性,各种建模不确定性以及飞行环境的复杂性,高超声速飞行器控制成为一个研究难点.针对某类具有参数不确定性的非线性系统,提出了一种反馈线性化与自适应估计相结合的方法,对非线性系统的输入输出动态应用反馈线性化处理以得到拟线性模型,并设计反馈控制律;对不确定参数采用自适应在线估计,利用Lyapunov方法分析稳定性;针对选择不同输出的情况,对如何消除内动态进行了讨论.为了验证该方法的可行性,将其应用于某高超声速飞行器巡航段纵向非线性模型,对速度和高度通道进行跟踪控制仿真,由于飞行器和大气环境存在建模不确定性,利用自适应控制对不确定参数进行在线估计.仿真结果显示该方法能够快速收敛,并且具有良好的在线自适应能力.  相似文献   

11.
    
针对无人机防滑刹车系统工作过程中同时出现系统输出滑移率稳定区域受限、控制输入饱和与刹车执行机构故障的多重约束问题,提出了一种基于障碍Lyapunov形式的自适应神经网络反演容错控制器的设计方法。当刹车执行机构发生故障时,通过自适应神经网络补偿刹车系统中的非线性及不确定项。根据反演设计原理,应用神经网络输出设计相应的容错控制律,同时,在控制器的设计中引入鲁棒切换控制项,优化系统快速容错的暂态性能。首先本文设计的容错控制器无需精确获取执行机构在线故障的重构信息,也能使刹车闭环系统能够快速稳定,然后基于Lyapunov方法分析了系统的稳定性,最后通过数值仿真结果表明,所提出的容错控制算法能够有效地保证刹车执行机构故障时控制系统的稳定性和有效性。  相似文献   

12.
使用SGCMGs航天器滑模姿态容错控制   总被引:1,自引:1,他引:0  
基于滑模控制与自适应理论,对使用单框架控制力矩陀螺群(SGCMGs)的刚性航天器的被动姿态容错控制问题进行了研究。首先建立了含有陀螺框架转速故障的系统数学模型。然后将框架转速直接作为控制量并应用滑模控制理论设计了容错控制器,同时控制器中还设计了自适应律对故障信息和干扰进行估计。由此,可在故障和干扰的先验信息未知的情况下,实现对航天器无故障和有故障情况下的姿态稳定控制,且具有较强的鲁棒性。最后,对2种构型单框架控制力矩陀螺群的不同故障模式进行数学仿真,验证了该控制方法的有效性和可行性。  相似文献   

13.
针对带有执行器故障的航天器近距离操作系统,提出了基于多设计融合的自适应故障补偿方法,实现在发生执行器卡死故障情况下,对目标航天器的位置和姿态的跟踪。提出的故障补偿方法无需故障检测,针对每种可能的故障模式设计控制器组成多控制器集合,并有效地将它们融合后构建最终反馈控制器。仿真结果表明了该故障补偿策略的有效性,能够保证追踪航天器系统的稳定性和期望的跟踪性能。  相似文献   

14.
The capability of autonomous fault detection and reconstruction is essential for future manned Mars exploration missions. Considering actuator failures and atmosphere uncertainties, we present a new active fault-tolerant control algorithm for Mars entry by use of neural network and structure adaptive model inversion. First, the online BP neural network is adopted to conduct the fault detection and isolation. Second, based on the structure adaptive model inversion, an adaptive neural network PID controller is developed for Mars entry fault-tolerant control. The normal PID controller will be automatically switched into neural network PID controller when an actuator fault is detected. Therefore, the error between the reference model and the output of the attitude control system would be adjusted to ensure the dynamic property of the entry vehicle. Finally, the effectiveness of the algorithm developed in this paper is confirmed by computer simulation.  相似文献   

15.
针对一类含有执行器失效故障和范数有界不确定性的系统,提出了一种鲁棒容错跟踪控制设计方法。该方法利用有界实引理,给出了保证闭环系统稳定且满足鲁棒性能要求的线性矩阵不等式(LMI)的表达式;为了削弱控制器的保守性,使用不同的Lyapunov变量对应不同的系统状态;由此带来的非凸优化问题,发展了一种迭代线性矩阵不等式算法。考虑到该迭代算法的收敛性取决于初值的选择,经过推导给出了一种求解合适初值的算法。将该算法应用于高超声速飞行器X-33跟踪控制器的设计,仿真结果表明本文算法是可行和有效的。   相似文献   

16.
一种克服不灵敏区的自适应控制方法   总被引:3,自引:0,他引:3  
利用不灵敏区逆函数技术提出了能够改善不灵敏区非线性因素对系统影响的鲁棒模型参考自适应控制.基于自适应控制模型匹配方程推导了闭环系统误差方程,分析了标称化参数估计误差.仿真研究了控制算法在导弹自动驾驶仪中的应用.   相似文献   

17.
基于事件触发的航天器姿态自适应容错控制   总被引:2,自引:0,他引:2       下载免费PDF全文
针对航天器通信和计算资源约束以及执行器故障场景下的姿态控制问题,提出了一种基于事件触发的航天器姿态自适应容错控制策略。首先,采用自适应方法估计故障信息、外界扰动等系统中未知参数,并引入事件触发机制,在执行器故障下实现容错控制的同时,节约星载计算机的计算资源。然后,基于李雅普诺夫方法证明了所提出的控制策略保证了闭环系统状态全局一致且最终有界稳定,并能有效避免Zeno现象,保证了执行器故障场景下对姿态的精确控制。最后,应用于航天器的姿态稳定试验,仿真结果验证了该方法的有效性。  相似文献   

18.
基于误差空间的航天器姿态反步容错控制   总被引:1,自引:0,他引:1  
提出了一种基于误差空间的航天器姿态反步容错控制方法,以反作用飞轮作为航天器的执行器,在考虑反作用飞轮存在安装偏差及故障的情况下,仍可保证航天器姿态的稳定性。首先,基于Lyapunov稳定性原理,根据系统机械能变化构造了具有普遍性的Lyapunov方程。通过反步递推方法,得到了适用于航天器存在执行器偏差及故障情况的普遍性的容错控制方法;然后,通过误差空间拓扑所得的误差函数描述了势能误差。从几何层面上看,这是描述势能误差的最短路径选择,从而得到了基于误差空间的反步容错控制方法。因此,在对航天器进行姿态控制时,该方法可以迅速调整增益,使得系统姿态误差迅速收敛至零,从而有效减少系统响应时间;最终,通过对考虑执行器偏差及故障情况的航天器姿态控制系统使用不同的控制方法进行数值仿真,验证了该方法能够在执行器故障情况下依然保持系统姿态的稳定,且具备良好的响应速度。  相似文献   

19.
颜岩 《空间科学学报》1987,7(4):262-271
本文从理论上分析了吊篮姿态控制系统数学模型中参数的不确定性,并且通过数字仿真和实验验证了这种不确定性对系统控制性能的影响.为保证得到良好的控制特性,在Popov超稳定理论的基础上,引出了气球吊篮姿态的模型参考自适应控制法.本文推出一套具有时变自适应增益的离散自适应算法,并在此基础上进行了大量数字仿真.仿真结果表明,吊篮姿态的模型参考自适应方法可以解决吊篮姿态的经典控制方法难以应付的参数大幅度变化、参数未知和非线性等问题.另外,与其它自适应方法相比,该方法还有自适应速度快、工程上易于实现等优点.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号