首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
鲁棒最优控制在随动系统中的应用   总被引:1,自引:0,他引:1  
考虑随动系统的特点,针对被控对象本身可能出现的参数摄动和外部干扰,提出了一种鲁棒最优控制方法.这种方法建立在一种改进的控制结构基础上,综合了鲁棒控制和最优控制的优点加以实现.通过对某随动系统的设计举例给出了方法的实现过程.仿真结果表明,这种方法既可以满足随动系统的跟随特性,又能够有效地抑制干扰,降低系统对参数摄动的敏感程度.这种方法的精度较高、鲁棒性强,具有实用性.  相似文献   

2.
研究三轴稳定的挠性航天器姿态的鲁棒控制问题.由混合坐标方程导出姿态动力学逆传递函数矩阵,并分析其正规性.基于正规性分析结果,使用系统不确定性反馈摄动描述对姿态控制系统的正规矩阵设计方法进行研究.研究结果表明,逆传递函数矩阵可视为正规矩阵,且动力学参数的摄动不影响其正规性.利用这一特性,提出一种适用于航天器姿态控制的正规矩阵设计方法.在该方法中,航天器姿态的鲁棒控制可以通过增加参数约束达成对三轴姿态的独立控制,从而提高设计的可继承性.计算机仿真验证了该设计方法的有效性.  相似文献   

3.
奇异摄动与鸭解   总被引:1,自引:1,他引:1  
鸭解是近年来在奇异摄动方程的研究中发现并开始研究的,它是一种新的分支现象,关于这方面的结果不是很多,且在大多数文献中多采用非标准方法,本文则利和渐近分析法,微分方程定性理论及不动点方法,对一类特殊的单参数奇异摄动方程鸭解的存在性进行研究。给出了鸭解存在的充分条件及其所对应参数的估计;并给出了鸭解的近似表达式,利用这些结果可以清楚地描述这类方程当参数变化时相图的变化情况。  相似文献   

4.
磁悬浮控制力矩陀螺(MSCMG)转子的稳定悬浮是实现陀螺高精度大力矩输出的关键。针对影响转子稳定悬浮的转子径向偏转耦合、非线性参数摄动、动框架效应问题,建立转子的动力学模型,提出了一种基于反馈线性化的增强型内模控制方法。利用反馈线性化方法实现径向偏转运动解耦以及转子动力学模型的线性化,设计增强型内模控制对转子系统的非线性参数摄动进行补偿并有效抑制动框架效应,提升了转子系统的稳定性。MATLAB仿真结果表明:所提出的控制方法实现了转子偏转的完全解耦,与PID控制相比,所提方法可以有效抑制参数摄动对转子径向平动的影响。对于转子径向偏转,与PID交叉控制相比,所提方法可以有效抑制框架扰动,提高系统控制精度。   相似文献   

5.
为使卫星在飞过特定经纬度地面上空时对应特定的空间基线形式,系统的其他参数常受制于诸多限制,只有编队构型可以进行更为自由的设计。以双星编队为例,研究了基于轨道摄动理论的编队飞行模型;分析了编队飞行InSAR卫星的轨道设计约束条件与设计目标;提出了四种轨道构型方案并对其测高性能进行比较;并分析了地球扁率摄动因素对编队构型及InSAR测高性能的影响。  相似文献   

6.
太阳同步(准)回归轨道卫星的轨道保持方法研究   总被引:4,自引:0,他引:4  
文中使用解析方法对太阳同步 (准 )回归轨道卫星动力学特性进行了研究 ,分析了非球摄动、大气阻力摄动和太阳引力谐振等主要摄动因素对太阳同步 (准 )回归轨道卫星的影响 ,并以此为依据对太阳同步 (准 )回归轨道卫星的轨道保持方法进行了探讨。定量分析结果表明 ,该方法切实可行 ,可以为轨道设计和轨道控制研究工作提供参考。  相似文献   

7.
为保证在轨机动实时性和高精度的要求,提出了一种基于机器学习的在轨实时机动决策方法。通过优化算法离线获得摄动下的精确解,减去二体解得到速度增量差,将其投影到轨道坐标系获得速度增量摄动修正项,以此作为神经网络输出,设计网络参数并训练得到摄动修正网络、组合应用摄动修正网络和二体解实现高精度的在轨实时轨道机动决策。仿真结果表明:卫星按照该决策机动完成后的终端位置偏差与按照优化算法给出的决策机动完成后终端位置偏差精度一致,且前者决策耗时仅为后者决策耗时的0.01%左右。所提轨道机动决策方法兼顾了精度与实时性,适用于星上决策。   相似文献   

8.
文章给出了带电卫星受到地磁摄动力的一般表达式,并就带电对卫星寿命的影响问题进行了定性讨论.  相似文献   

9.
飞行器无动力再入过程中,姿态受到气动及不确定干扰影响,控制模型具有强耦合、大范围参数摄动等非线性特征。针对再入飞行器姿态控制问题,结合扩张状态观测器(Extended State Observer,ESO)和自适应控制律,基于奇异摄动理论将非线性姿态控制模型分为快慢两回路,分别设计了飞行器内环和外环自适应姿态控制器,并通过 Lyapunov 稳定性理论证明控制器的稳定性。仿真结果表明,控制系统在强干扰及参数大范围摄动的情况下,具有较强的鲁棒性,能够获取良好的动态品质和跟踪性能。  相似文献   

10.
针对近地轨道卫星相对运动过程中的周期变化特性,利用轨道周期平均方法给出了平均相对运动方程,并在此基础上设计了两种编队构型维持策略.首先,推导出以轨道根数差分表示的平均相对运动方程,该方程能有效消除相对运动的周期性变化.其次,针对大气阻力摄动和J2项摄动,利用轨道平均根数的线性化递推公式,给出了平均相对运动轨迹的预报方程,通过事先预报编队飞行的平均轨迹,为编队构型设计和保持控制提供参考依据.最后通过数学仿真对两种编队构型维持策略进行了验证.  相似文献   

11.
为了克服外部扰动突变对磁悬浮转子悬浮稳定度和磁悬浮控制敏感陀螺(MSCSG)输出力矩精度的影响,提出了一种基于自抗扰控制器(ADRC)和径向基函数(RBF)神经网络相结合的MSCSG径向偏转控制方法。阐明了ADRC参数对MSCSG控制效果的影响,通过优化设计ADRC,并将RBF神经网络和ADRC结合运用,实现对控制器参数的实时调试,从而克服外界扰动突变的影响。仿真证明所提方法相较于单ADRC控制,不仅改善了解耦控制精度,而且提高了系统对外部扰动和参数变化的响应速度和鲁棒性,可应用于MSCSG的高精度、快响应、强鲁棒控制。   相似文献   

12.
高超声速飞行器抗干扰反步滑模控制   总被引:2,自引:1,他引:1  
针对存在参数不确定及外部扰动下的高超声速飞行器轨迹跟踪控制问题,研究了一种基于反步法的抗干扰滑模控制设计方法.将非线性高超声速飞行器动力学模型表达为严反馈形式分步进行设计.采用滑模控制方法进行每步的控制器设计,并提出采用扩展状态观测器(ESO,Extended State Observer)方法实现对参数不确定及外部扰动产生的内外干扰进行估计,继而在控制中补偿.扩展状态观测器能保证对干扰的估计收敛到真值附近的邻域内,从而能够保证较好的补偿效果.通过0.5°附加干扰攻角和25%的气动参数偏差下的非线性高超声速飞行器动力学模型仿真结果验证了该抗干扰滑模控制方案对内外干扰的抑制效果和闭环系统良好的跟踪性能.   相似文献   

13.
分析了卫星无拖曳控制系统的在轨参数辨识问题,由于无拖曳系统的不稳定性质,需要设计控制器使其稳定,在此基础上进行闭环辨识.根据自抗扰控制原理,设计了扩张状态观测器以估计系统不同控制回路的扰动和状态,基于状态和扰动估计值设计控制器使系统稳定.提出了基于扩张状态观测器(ESO)的多输入多输出系统闭环参数辨识方法.为提高实际应用中的辨识效果,引入积分型滤波器对观测状态中的噪声进行抑制.将这种方法应用于类似LISA Pathfinder的单轴无拖曳模型,对系统动力学参数进行估计,通过数值仿真实验验证了该辨识方法的有效性和实用性.   相似文献   

14.
针对无人机着舰过程中舰尾流扰动和甲板运动扰动对着舰点散布的影响,对复杂着舰环境下的无人机着舰纵向控制策略、控制结构和控制律参数设计方法进行研究。针对常规控制结构抗扰能力不足的问题,提出了无人机着舰纵向多操纵面平衡态直接力控制(DFC)策略及控制结构。提出了面向着舰点散布的控制律参数优化设计方法,该方法在保证系统满足稳定裕度指标的基础上,综合考虑了舰尾流扰动和甲板运动扰动对着舰点散布的影响,使2种扰动造成的着舰点散布最小。构建控制律参数优化设计问题,通过粒子群优化(PSO)算法进行优化设计,得到高抗扰性能的控制律参数。在控制律参数优化中考虑舰尾流和甲板运动的功率谱密度分布,使设计更具有针对性,减小了控制律设计的保守性,进一步提高控制的抗扰性能。算例设计及仿真验证了多操纵面平衡态DFC控制结构在抵抗舰尾流扰动和甲板运动扰动方面的优异性能,并证明了所提控制律参数设计方法的有效性。  相似文献   

15.
近地轨道的双星编队通常设计具有自稳定性的编队构型参数初值,通过保持编队构型参数形成长期稳定的相对周期运动。针对编队中卫星数量增多产生的相对运动耦合问题,提出了基于Hill坐标和三角函数公式的多星相对运动分析方法。基于SAR载荷测量基线定义,结合多星编队构型参数的相对运动特性,提出了编队构型参数的设计方法,能够实现多星编队的最大有效基线组合。通过分析J2项摄动和大气阻力摄动的长期影响,研究了异构多星编队的相对运动衍化规律,提出了主从形式的脉冲偏置控制,能够有效保持针对异构多星编队设计的编队构型。通过面质比异构的四星编队控制仿真,验证了脉冲偏置控制形式下异构多星编队构型保持控制方法的有效性。  相似文献   

16.
基于自校正模糊神经控制的无刷直流传动系统   总被引:1,自引:0,他引:1  
提出了一种自校正模糊神经网络控制器(SCFNNC)来实现无刷直流电动机起动、调速、制动等各运行阶段的性能指标.该SCFNNC是采用调整系统增益参数的方法完成较完善的控制规则的.重点研究了系统自校正增益参数的确定方法,模糊控制器的设计,人工神经网络实现模糊控制规则的方法等.自校正增益参数是根据系统对超调量、转速稳态误差、动态速降的期望值来确定的.设计模糊控制器时是根据系统的性能指标,确定出合适的模糊控制规则表,用于训练神经网络.为使系统的性能达到最佳,采用了自校正模糊神经控制、开关控制和比例控制相结合的复合控制方法,通过数学仿真证实配备SCFNNC的系统具有优良的动、静态特性,及较强的鲁棒性.  相似文献   

17.
研究了载体位置及姿态均不受控时空间机器人在惯性空间中的轨迹跟踪问题.考虑到系统存在参数不确定及死区特性等情况,提出了一种基于干扰观测器的L2反步控制方案.结合拉格朗日方程和系统Jacobi关系矩阵建立系统的动力学模型.利用干扰观测器对系统建模误差进行观测补偿,并通过L2干扰抑制法对观测误差进行消除,同时采用死区模糊补偿器对系统死区特性造成的影响进行补偿.该控制方案不需要预知准确的惯性参数,不用对惯性参数进行线性化处理,并且不要求估计系统不确定项和死区参数的上界,从而简化了系统的控制.数值仿真证明了该控制方案的有效性.   相似文献   

18.
后掠角对后掠机翼边界层稳定性及转捩的影响   总被引:1,自引:1,他引:0  
后掠机翼边界层流动稳定性及转捩对翼型的设计及优化有着重要的参考价值,而机翼后掠角是引起后掠机翼边界层横流失稳的关键参数之一.以NACA0012翼型为研究对象,通过求解三维可压缩Navier-Stokes方程计算了展向无限长后掠机翼的基本流场;通过求解Orr-Sommerfeld方程得到了扰动Tollmien-Schishting波演化的中性曲线及幅值曲线,研究了后掠角对后掠机翼边界层流动稳定性的影响;最后采用eN方法进行了转捩预测.研究发现,随后掠角的增大,横流强度和扰动幅值放大指数n均先增加后减小,且后掠角在40°~50°之间横流强度达到最大值.当后掠角在50°左右时,用转捩预测eN方法计算的幅值增长指数N值最大,导致转捩发生所需的初始扰动幅值最小,转捩最易发生.   相似文献   

19.
以精确附着小天体表面的任务为背景,提出一种基于扰动观测器(DOB)和动态面控制的附着小天体的制导与控制方法。根据探测器的初始条件与终端着陆条件规划了标称轨迹,并将引力场建模误差、参数摄动和外部干扰等视为总扰动,结合动态面控制和DOB设计了标称轨迹跟踪控制器。分析总扰动估计误差的渐进收敛性以及闭环标称轨迹跟踪控制系统的稳定性,并确定控制器参数选取条件。数值仿真结果表明,所设计的DOB可以有效地估计并抑制总扰动且闭环标称轨迹跟踪控制系统具有良好的稳定性和控制精度。  相似文献   

20.
Theses days, many nano- and micro-satellites are applied to several astronomy and remote sensing missions. In order to achieve mission requirements, these satellites must control the attitude precisely. A magnetic disturbance is one of the dominant sources of attitude disturbances. Therefore, this disturbance should be canceled in-orbit or on the ground to achieve the attitude strict requirements. This paper presents the effect of the magnetic disturbance to the attitude in nano- and micro-satellite missions and the sources of the residual magnetic moment of the satellites, which causes the magnetic disturbance. Then, the paper proposes a method to compensate the residual magnetic moment both in-orbit and in the design phase of the satellites. The research also focused on a time-varying residual magnetic moment. Finally, the method is applied to a micro-astrometry satellite as an example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号