首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
The slant total electron content (STEC) of the ionosphere is defined as the integral of the electron density along the ray-path of the signal between the transmitter and the receiver. So-called geometry free GPS measurements provide information on the electron density, which is basically a four-dimensional function depending on spatial position and time. Since ground-based measurements are not very sensitive to the vertical structure within the atmosphere, the ionosphere is often represented by a spherical layer, where all electrons are concentrated. Then the STEC is transformed into the vertical total electron content (VTEC), which is a three-dimensional function depending on longitude, latitude and time.In our approach, we decompose an ionospheric function, i.e. the electron density or the VTEC, into a reference part computed from a given model like the International Reference Ionosphere (IRI) and an unknown correction term expanded in a multi-dimensional series in terms of localizing base functions. The corresponding series coefficients are calculable from GPS measurements applying parameter estimation procedures. Since the GPS receivers are located rather unbalanced, finer structures are modelable just in regions with a sufficient number of observation sites. Due to the localizing feature of B-spline functions we apply a tensor product spline expansion to model the correction term regionally. Furthermore, the multi-resolution representation derived from wavelet analysis allows monitoring the ionosphere at different resolutions levels. We demonstrate the advantages of this procedure by representing a simulated VTEC data set over South America.  相似文献   

2.
Electron density distribution is the major determining parameter of the ionosphere. Computerized Ionospheric Tomography (CIT) is a method to reconstruct ionospheric electron density image by computing Total Electron Content (TEC) values from the recorded Global Positioning Satellite System (GPS) signals. Due to the multi-scale variability of the ionosphere and inherent biases and errors in the computation of TEC, CIT constitutes an underdetermined ill-posed inverse problem. In this study, a novel Singular Value Decomposition (SVD) based CIT reconstruction technique is proposed for the imaging of electron density in both space (latitude, longitude, altitude) and time. The underlying model is obtained from International Reference Ionosphere (IRI) and the necessary measurements are obtained from earth based and satellite based GPS recordings. Based on the IRI-2007 model, a basis is formed by SVD for the required location and the time of interest. Selecting the first few basis vectors corresponding to the most significant singular values, the 3-D CIT is formulated as a weighted least squares estimation problem of the basis coefficients. By providing significant regularization to the tomographic inversion problem with limited projections, the proposed technique provides robust and reliable 3-D reconstructions of ionospheric electron density.  相似文献   

3.
基于GPS技术实时监测电离层变化原理, 利用载波平滑伪距观测值建立区域电离层模型的方法, 计算了电离层延迟量和硬件延迟, 根据硬件延迟值相对稳定的特点, 采取一定时段求解出硬件延迟量, 对实时硬件延迟量进行预报, 进而实时分离GPS信号传播路径上的垂直总电子含量VTEC. 利用上海区域内的GPS网的观测数据, 建立实时上海区域电离层延迟模型, 监测上海区域的电离层变化. 数据分析结果表明, 这种方法的内符合精度优于3 TECU.   相似文献   

4.
The international reference ionosphere, IRI, and its extension to plasmasphere, IRI-Plas, models require reliable prediction of solar and ionospheric proxy indices of solar activity for nowcasting and forecasting of the ionosphere parameters. It is shown that IRI prediction errors could increase for the F2 layer critical frequency foF2 and the peak height hmF2 due to erroneous predictions of the ionospheric global IG index and the international sunspot number SSN1 index on which IRI and IRI-Plas models are built. Regression relation is introduced to produce daily SSN1 proxy index from new time series SSN2 index provided from June 2015, after recalibration of sunspots data. To avoid extra errors of the ionosphere model a new solar activity prediction (SAP) model for the ascending part of the solar cycle SC25 is proposed which expresses analytically the SSN1 proxy index and the 10.7-cm radio flux F10.7 index in terms of the phase of the solar cycle, Φ. SAP model is based on monthly indices observed during the descending part of SC24 complemented with forecast of time and amplitude for SC25 peak. The strength of SC25 is predicted to be less than that of SC24 as shown with their amplitudes for eight types of indices driving IRI-Plas model.  相似文献   

5.
Computerized ionospheric tomography (CIT) is a method to estimate ionospheric electron density distribution by using the global positioning system (GPS) signals recorded by the GPS receivers. Ionospheric electron density is a function of latitude, longitude, height and time. A general approach in CIT is to represent the ionosphere as a linear combination of basis functions. In this study, the model of the ionosphere is obtained from the IRI in latitude and height only. The goal is to determine the best representing basis function from the set of Squeezed Legendre polynomials, truncated Legendre polynomials, Haar Wavelets and singular value decomposition (SVD). The reconstruction algorithms used in this study can be listed as total least squares (TLS), regularized least squares, algebraic reconstruction technique (ART) and a hybrid algorithm where the reconstruction from the TLS algorithm is used as the initial estimate for the ART. The error performance of the reconstruction algorithms are compared with respect to the electron density generated by the IRI-2001 model. In the investigated scenario, the measurements are obtained from the IRI-2001 as the line integral of the electron density profiles, imitating the total electron content estimated from GPS measurements. It has been observed that the minimum error between the reconstructed and model ionospheres depends on both the reconstruction algorithm and the basis functions where the best results have been obtained for the basis functions from the model itself through SVD.  相似文献   

6.
利用软件无线电技术设计了一种电离层多普勒接收机. 该接收机采用DSP, FPGA等数字芯片与PXI总线进行架构, 使用GPS作为接收机的时间和频率同 步模块, 能够灵活设置系统参数. 实验接收来自中国蒲城陕西天文台的高 频时间信号, 实时获取由于电离层扰动所产生的多普勒频率偏移信息. 使用通过MATLAB语言实现的信号处理软件平台, 对接收到的高频信号进行处理. 观测结果表明, 接收机能够分析电离层回波信号的多普勒频移随时间的变化, 是获取不同空间尺度电离层扰动信息的一种有效手段.   相似文献   

7.
The primary objective of the Scintillation and Tomography Receiver in Space (CITRIS) is to detect ionospheric irregularities from space at low latitude. For this purpose, the satellite receiver uses the UHF and S-Band transmissions of the ground network of Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) beacons. CITRIS, developed at the Naval Research Laboratory, differs from the normal DORIS receiver by being able to capture and store the complex amplitude of the 401.25 and 2036.25 MHz transmissions at 200 Hz sample rate. Ground processing of the CITRIS data yields total electron content (TEC) and both phase and amplitude scintillations. With CITRIS flying on the US Space Test Program (STP) satellite STPSat1, 2 years of data were collected and processed to determine the fluctuations in ionospheric TEC and radio scintillations associated with equatorial irregularities. CITRIS flights over DORIS transmitters yield direct measurements of the horizontal plasma density fluctuations associated with equatorial plasma bubbles. Future flights of CITRIS can provide valuable complements to other satellite instruments such as GPS occultation receivers used to estimate vertical electron density profiles in the ionosphere.  相似文献   

8.
Presently, the ionosphere effect is the main source of the error in the Global Positioning System (GPS) observations. This effect can largely be removed by using the two-frequency measurements, while to obtain the reasonable results in the single-frequency applications, an accurate ionosphere model is required. Since the global ionosphere models do not meet our needs everywhere, the local ionosphere models are developed. In this paper, a rapid local ionosphere model over Iran is presented. For this purpose, the GPS observations obtained from 40 GPS stations of the Iranian Permanent GPS Network (IPGN) and 16 other GPS stations around Iran have been used. The observations have been selected under 2014 solar maximum, from the days 058, 107, 188 and 271 of the year 2014 with different geomagnetic activities. Moreover, ionospheric observables based on the precise point positioning (PPP) have been applied to model the ionosphere. To represent our ionosphere model, the B-spline basis functions have been employed and the variance component estimation (VCE) method has been used to regularize the problem.To show the efficiency our PPP-derived local ionosphere model with respect to the International GNSS Service (IGS) global models, these models are applied on the single point positioning using single-frequency observations and their results are compared with the precise coordinates obtained from the double-differenced solution using dual-frequency observations. The results show that the 95th percentile of horizontal and vertical positioning errors of the single-frequency point positioning are about 3.1 and 13.6?m, respectively, when any ionosphere model are not applied. These values significantly improve when the ionosphere models are applied in the solutions. Applying CODE’s Rapid Global ionosphere map (CORG), improvements of 59% and 81% in horizontal and vertical components are observed. These values for the IGS Global ionosphere map (IGSG) are 70% and 82%, respectively. The best results are obtained from our local ionosphere model, where 84% and 87% improvements in horizontal and vertical components are observed. These results confirm the efficiency of our local ionosphere model over Iran with respect to the global models. As a by-product, the Differential Code Biases (DCBs) of the receivers are also estimated. In this line, we found that the intra-day variations of the receiver DCBs could be significant. Therefore, these variations must be taken into account for the precise ionosphere modeling.  相似文献   

9.
Forcings from above and below the ionosphere can cause disturbances that need to be detected and corrected for navigation systems. Ground Based Augmentation Systems (GBAS) are used to give corrections to aircraft navigation systems while landing. These systems use regional ionosphere monitoring algorithms to detect the anomalies in the ionosphere. The aim of this study is to understand occurrence of ionosphere anomalies and their trends over Turkey. A comprehensive analysis of spatio-temporal variability of ionosphere is carried out for a midlatitude GPS network using Slant Total Electron Content (STEC). Differential Rate Of TEC (DROT), which is a measure of the amount of deviation of temporal derivative of TEC from its trend, is used to detect and classify the level of such disturbances. The GPS satellite tracks are grouped into north, east, west and over directions. The 24 h is divided into six time intervals. The percentage occurrence of each DROT category and the deviation from STEC trend in magnitude are calculated and grouped into satellite track directions and time intervals for 2010 (low solar activity), 2011 and 2012 (medium solar activity). The highest level of disturbances is observed in north and west directions, and during sunrise and sunset hours. The dominant periods of percentage occurrences are diurnal (22–25 h), semidiurnal (12–13 h) and terdiurnal (8–9 h) followed by quasi two-day and quasi 16-day periods. Disturbances corresponding to 50% < DROT < 70% are mostly visible during low solar activity years with magnitudes from 1 to 2 TECU. Geomagnetic storms can cause aperiodic larger scale disturbances that are mostly correlated with DROT > 70%. In 2012, the magnitude of such disturbances can reach 5 TECU. The anisotropic and dynamic nature of midlatitude ionosphere is reflected in the spatio-temporal and spectral distributions of DROT, and their percentage occurrences. This study serves a basis for future studies about development of a regional ionosphere monitoring for Turkey.  相似文献   

10.
The dispersive nature of the ionosphere makes it possible to measure its total electron content (TEC). Thus Global Positioning System, which uses dual-frequency radio signals, is an ideal system to measure TEC. When data from an ionosonde situated in polar region was observed, the height of an approximated thin shell of electrons (shell height) used in GPS studies was seen not to be fixed but rather changing with time. Here we introduce a new method in which we included the varying shell heights derived from the ionosonde to map the slant total electron content from GPS to obtain a more precise vertical total electron content of the ionosphere contrary to some previous methods which used fixed shell heights. In this paper we also compared the ionosonde derived TEC with the GPS derived vertical TEC (vTEC) values. These GPS vTEC values were obtained from GPS slant TEC (sTEC) measurements using both fixed shell height and varying shell heights (from ionosonde measurements). For the polar regions, the varying shell height approach produced better results than the fixed shell height and compared to exponential function, Chapman function seems to be a better function to model the topside ionosphere.  相似文献   

11.
Low Earth Orbiting satellites carrying a dual frequency GPS receiver onboard offer a unique opportunity to remote sensing of the global ionosphere on a continuous basis. No other profiling technique unifies profiling through the entire F2-layer with global coverage. The FORMOSAT-3/COSMIC data can make a positive impact on the global ionosphere study providing essential information about the height electron density distribution and particularly over regions that are not accessible with ground-based measuring instruments such as ionosondes and GPS dual frequency receivers. Therefore, it is important to verify occultation profiles with other techniques and to obtain experience in the reliability of their derivation. In the given study we present results of comparison of the electron density profiles derived from radio occultation measurements on-board FS-3/COSMIC and from the Kharkov incoherent scatter radar sounding.  相似文献   

12.
The propagation of radio signals in the Earth’s atmosphere is dominantly affected by the ionosphere due to its dispersive nature. Global Positioning System (GPS) data provides relevant information that leads to the derivation of total electron content (TEC) which can be considered as the ionosphere’s measure of ionisation. This paper presents part of a feasibility study for the development of a Neural Network (NN) based model for the prediction of South African GPS derived TEC. The South African GPS receiver network is operated and maintained by the Chief Directorate Surveys and Mapping (CDSM) in Cape Town, South Africa. Vertical total electron content (VTEC) was calculated for four GPS receiver stations using the Adjusted Spherical Harmonic (ASHA) model. Factors that influence TEC were then identified and used to derive input parameters for the NN. The well established factors used are seasonal variation, diurnal variation, solar activity and magnetic activity. Comparison of diurnal predicted TEC values from both the NN model and the International Reference Ionosphere (IRI-2001) with GPS TEC revealed that the IRI provides more accurate predictions than the NN model during the spring equinoxes. However, on average the NN model predicts GPS TEC more accurately than the IRI model over the GPS locations considered within South Africa.  相似文献   

13.
The total electron content (TEC) estimation by the Global Positioning System (GPS) can be seriously affected by the differential code biases (DCB), referred to as inter-frequency biases (IFB), of the satellite and receiver so that an accuracy of GPS–TEC value is dependent on the error of DCBs estimation. In this paper, we proposed the singular value decomposition (SVD) method to estimate the DCB of GPS satellites and receivers using the Korean GPS network (KGN) in South Korea. The receiver DCBs of about 49 GPS reference stations in KGN were determined for the accurate estimation of the regional ionospheric TEC. They obtained from the daily solution have large biases ranging from +5 to +27 ns for geomagnetic quiet days. The receiver DCB of SUWN reference station was compared with the estimates of IGS and JPL global ionosphere map (GIM). The results have shown comparatively good agreement at the level within 0.2 ns. After correction of receiver DCBs and knowing the satellite DCBs, the comparison between the behavior of the estimated TEC and that of GIMs was performed for consecutive three days. We showed that there is a good agreement between KASI model and GIMs.  相似文献   

14.
The knowledge of the electron density is the key point in correcting ionospheric delays of electromagnetic measurements and in studying the ionosphere. During the last decade GNSS, in particular GPS, has become a promising tool for monitoring the total electron content (TEC), i.e., the integral of the electron density along the ray-path between the transmitting satellite and the receiver. Hence, geometry-free GNSS measurements provide informations on the electron density, which is basically a four-dimensional function depending on spatial position and time. In addition, these GNSS measurements can be combined with other available data including nadir, over-ocean TEC observations from dual-frequency radar altimetry (T/P, JASON, ENVISAT), and TECs from GPS-LEO occultation systems (e.g., FORMOSAT-3/COSMIC, CHAMP) with heterogeneous sampling and accuracy.  相似文献   

15.
Modern use and study of the auroral region needs to attract a wider class of models for describing conditions of radio wave propagation in the ionosphere. In this paper the possibilities of the International Reference Ionosphere model, well-proven and widespread in the mid-latitudes, are investigated in the high latitude zone. Model and measured values of the critical frequency foF2 for two mid-latitude stations (Juliusruh and Goosebay) and four high-latitude ones (Loparskaya, Sodankyla, Sondrestrom, Thule) are compared. Deviations of medians, variations from day to day and solar activity trends seemed to be similar for both areas. This similarity is irrespective of the RZ12 index. Special attention is paid to the TEC parameter and its determination using 6 versions of models, a new version of the model IRI2010 (IRI-Plas) among them. It is shown that the IRI-Plas model significantly improves the definition of TEC in contrast to the versions of IRI2007 and the new model NeQuick. The use of the median of the experimental equivalent slab thickness, together with the current values of the TEC, increases by a factor of two the agreement between calculated and measured foF2 values as compared with the variations from day to day. This allows foF2 to be defined in near-real time.  相似文献   

16.
Signals from Global Positioning System (GPS) satellites at the horizon or at low elevations are often excluded from a GPS solution because they experience considerable ionospheric delays and multipath effects. Their exclusion can degrade the overall satellite geometry for the calculations, resulting in greater errors; an effect known as the Dilution of Precision (DOP). In contrast, signals from high elevation satellites experience less ionospheric delays and multipath effects. The aim is to find a balance in the choice of elevation mask, to reduce the propagation delays and multipath whilst maintaining good satellite geometry, and to use tomography to correct for the ionosphere and thus improve single-frequency GPS timing accuracy. GPS data, collected from a global network of dual-frequency GPS receivers, have been used to produce four GPS timing solutions, each with a different ionospheric compensation technique. One solution uses a 4D tomographic algorithm, Multi-Instrument Data Analysis System (MIDAS), to compensate for the ionospheric delay. Maps of ionospheric electron density are produced and used to correct the single-frequency pseudorange observations. This method is compared to a dual-frequency solution and two other single-frequency solutions: one does not include any ionospheric compensation and the other uses the broadcast Klobuchar model. Data from the solar maximum year 2002 and October 2003 have been investigated to display results when the ionospheric delays are large and variable. The study focuses on Europe and results are produced for the chosen test site, VILL (Villafranca, Spain). The effects of excluding all of the GPS satellites below various elevation masks, ranging from 5° to 40°, on timing solutions for fixed (static) and mobile (moving) situations are presented. The greatest timing accuracies when using the fixed GPS receiver technique are obtained by using a 40° mask, rather than a 5° mask. The mobile GPS timing solutions are most accurate when satellites at lower elevations continue to be included: using a mask between 10° and 20°. MIDAS offers the most accurate and least variable single-frequency timing solution and accuracies to within 10 ns are achieved for fixed GPS receiver situations. Future improvements are anticipated by combining both GPS and Galileo data towards computing a timing solution.  相似文献   

17.
It is important to use models developed specifically for the equatorial ionospheric estimation for real-time applications, particularly in Satellite Navigation. This work demonstrates a methodology for improved predictions of VTEC in real time using the model developed for the equatorial ionosphere by the authors. This work has been done using TEC data of the low solar activity period of 2005 obtained using dual frequency GPS receivers installed under the GAGAN project of ISRO. For the purpose, the model is first used in conjunction with Kriging technique. Improvement in accuracy is observed when compared with the estimations from the model alone using the measurements as true reference. Further improvement is obtained by Bayesian combination of these estimates with independent Neural Network based predictions. Statistical performance of improvement is provided. An improvement of ∼1 m in confidence level of estimation of VTEC is obtained.  相似文献   

18.
This paper presents the development of a Total Electron Content (TEC) map for the Nigerian ionosphere. In this work, TEC measurements obtained from the AFRL-SCINDA GPS (Air Force Research Laboratory-Scintillation Network Decision Aid, Global Positioning System) equipment installed at Nsukka (6.87°N, 7.38°E) are used to adapt the International Reference Ionosphere (IRI) model for the Nigerian Ionosphere. The map is being developed as a computer program (implemented in the MATLAB programming language) that shows spatial and temporal representations of TEC for the Nigerian ionosphere. The method is aimed at showing how the IRI model can be used to estimate VTEC over wide areas by incorporating GPS measurements. This method is validated by using GPS VTEC data collected from a station in Ilorin (8.50°N, 4.55°E).  相似文献   

19.
Ground-based vertical incidence soundings are well suited to model the bottom-side ionosphere but are not so good for dependably modelling the topside ionosphere. This study aims to combine vertical incidence sounding and dual-frequency GPS measurements to reconstruct the topside profile. The reconstruction technique relays on the use of the so-called vary-Chap approach that use an α-Chapman function with a continuously varying scale height.  相似文献   

20.
Various studies have been performed to investigate the accuracy of troposphere zenith wet delays (ZWDs) determined from GPS. Most of these studies use dual-frequency GPS data of large-scale networks with long baselines to determine the absolute ZWDs. For small-scale networks the estimability of the absolute ZWDs deteriorates due to high correlation between the solutions of the ZWDs and satellite-specific parameters as satellite clocks. However, as relative ZWDs (rZWDs) can always be estimated, irrespective of the size of the network, it is of interest to understand how the large-scale network rZWD-performance of dual-frequency GPS using an ionosphere-float model compares to the small-scale network rZWD-performance of single-frequency GPS using an ionosphere-weighted model. In this contribution such an analysis is performed using undifferenced and uncombined network parametrization modelling. In this context we demonstrate the ionosphere weighted constraints, which allows the determination of the rZWDs independent from signals on the second frequency. Based on an analysis of both simulated and real data, it is found that under quiet ionosphere conditions, the accuracy of the single-frequency determined rZWDs in the ionosphere-weighted network is comparable to that of the large-scale dual-frequency network without ionospheric constraints. Making use of the real data from two baselines of 15?days, it was found that the absolute differences of the rZWDs applying the two strategies are within 1?cm in over 90% and 95% of the time for ambiguity-float and -fixed cases, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号