首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
根据夜间135.6nm大气辉光光强与F2层峰值电子密度NmF2平方成正比的物理机制,在前期夜间135.6nm气辉辐射激发模型研究的基础上建立了峰值电子密度的反演算法,把全球经纬度分成若干格点,每个格点的电离层及中性成分信息分别由IRI2000和MSISE90提供,将电离层及中性成分廓线输入夜气辉辐射激发模型,计算每个格点135.6nm气辉的辐射强度,然后将各个格点的135.6nm气辉辐射强度与电离层廓线输入的NmF2平方拟合得到气辉强度与NmF2的转换因子.利用此方法可获得不同地方时、季节和太阳活动周期的转换因子组成查算表,进而根据实际探测的135.6nm气辉辐射强度反演相应时空的NmF2.最后对该算法的反演误差进行了综合分析,为该算法适用的时空特性提供重要理论支撑.   相似文献   

2.
The International Reference Ionosphere (IRI) parameters B0 and B1 provide a representation of the thickness and shape, respectively, of the F2 layer of the bottomside ionosphere. These parameters can be derived from electron density profiles that are determined from vertical incidence ionograms. This paper aims to illustrate the variability of these parameters for a single mid latitude station and demonstrate the ability of the Neural Network (NN) modeling technique for developing a predictive model for these parameters. Grahamstown, South Africa (33.3°S, 26.5°E) was chosen as the mid latitude station used in this study and the B0 and B1 parameters for an 11 year period were determined from electron density profiles recorded at that station with a University of Massachusetts Lowell Center for Atmospheric Research (UMLCAR) Digisonde. A preliminary single station NN model was then developed using the Grahamstown data from 1996 to 2005 as a training database, and input parameters known to affect the behaviour of the F2 layer, such as day number, hour, solar and magnetic indices. An analysis of the diurnal, seasonal and solar variations of these parameters was undertaken for the years 2000, 2005 and 2006 using hourly monthly median values. Comparisons between the values derived from measured data and those predicted using the two available IRI-2001 methods (IRI tables and Gulyaeva, T. Progress in ionospheric informatics based on electron density profile analysis of ionograms. Adv. Space Res. 7(6), 39–48, 1987.) and the newly developed NN model are also shown in this paper. The preliminary NN model showed that it is feasible to use the NN technique to develop a prediction tool for the IRI thickness and shape parameters and first results from this model reveal that for the mid latitude location used in this study the NN model provides a more accurate prediction than the current IRI model options.  相似文献   

3.
Solar Radiation Pressure (SRP) is the dominant non-gravitational perturbation for GNSS (Global Navigation Satellite System) satellites. In the absence of precise surface models, the Empirical CODE Orbit Models (ECOM, ECOM2) are widely used in GNSS satellite orbit determination. Based on previous studies, the use of an a priori box-wing model enhances the ECOM model, especially if the spacecraft is a stretched body satellite. However, so far not all the GNSS system providers have published their metadata. To ensure a precise use of the a priori box-wing model, we estimate the optical parameters of all the Galileo, BeiDou-2, and QZS-1 (Quasi Zenith Satellite System) satellites based on the physical processes from SRP to acceleration. Validation using orbit prediction proves that the adjusted parameters of Galileo and QZS-1 satellites exhibit almost the same performance as the corresponding published and “best guess” values. Whereas, the estimated parameters of BeiDou-2 satellites demonstrate an improvement of more than 60% over the initial “guess” values. The resulting optical parameters of all the satellites are introduced into an a priori box-wing model, which is jointly used with ECOM and ECOM2 model in the orbit determination. Results show that the pure ECOM2 model exhibits better performance than the pure ECOM model for Galileo, BeiDou-2 GEO and QZS-1 orbits. Combined with the a priori box-wing model the ECOM model (ECOM+BW) results in the best Galileo, BeiDou-2 GEO and QZS-1 orbits. The standard deviation (STD) of satellite laser ranging residuals reduce by about 20% and 5% with respect to the pure ECOM2 model for Galileo and BeiDou-2 GEO orbits, while the reductions are about 40% and 60% for QZS-1 orbits in yaw-steering and orbit-normal mode respectively. BeiDou-2 IGSO and MEO satellite orbits do not benefit much from the a priori box-wing model. In summary, we suggest setting up a unified SRP model of ECOM+BW for Galileo, QZS-1, and BeiDou-2 orbits based on the adjusted metadata. In addition, we estimate the optical parameters of BeiDou-3e and QZS-2 satellites using a limited number of tracking stations. Results regarding the unified SRP model indicate the same advantages, the STD of satellite laser ranging residuals reduces by about 30% and 20% for QZS-2 and BeiDou-3e orbits respectively over orbit products without a priori model. The estimation procedure is effective and easy to apply to the new emerging satellites in the future.  相似文献   

4.
Tight integration can enhance the model strength and positioning performance by considering the characteristic of differential inter-system bias (DISB), especially in obstructed environments. However, limited work emphasizes the comprehensive analysis of five-frequency DISBs between BDS-3 and other systems considering the receiver type, receiver configuration, and antenna type. In addition, the overlapping DISBs between BDS-3 and BDS-2 are also in great demand for further investigation since they are often regarded as one system. In this study, one DISB-float model is introduced to estimate the DISBs, and one DISB-fixed model and one DISB-free model are formulated to enhance the model strength of tight integration. Four dedicated datasets were collected to estimate the DISBs, which are also comprehensively analyzed considering the receiver type, receiver configuration, and antenna type. The results show that the DISBs between BDS-3 and other systems are rather stable over a certain period and are related to the receiver type and receiver configuration, whereas are not related to the antenna type. More interestingly, the B1I code DISB between BDS-3 and BDS-2 exhibits significant magnitude with a mean value of ?1.44 m for the baseline composed of two different receivers. In this case, the B1I code DISB must be considered and the tight integration between BDS-3 and BDS-2 considering its calibration can improve the positioning performance. Besides, the tight integration of the DISB-fixed model can significantly improve the positioning accuracy between multiple GNSS. Compared to the loose integration, the improvement of 60.6 %, 56.6 %, and 61.2 % can be obtained in the E, N, and U directions, when only two satellites are available for each system. In real obstructed environments, the tight integration of the DISB-free model can also improve the positioning performance in terms of positioning availability and accuracy, as well as the ambiguity resolution performance.  相似文献   

5.
The antiparallel merging model places the location of the reconnection region for a dominant interplanetary magnetic field (IMF) BY at high latitudes at the dayside magnetopause and predicts that the low-latitude boundary layer (LLBL) is located on open field lines of the magnetospheric flanks. Interball-1 data obtained in the wide local time range near the low-latitude magnetopause makes it possible to analyze the LLBL plasma population and to find a link between possible reconnection at high latitudes and LLBL occurrence. We found that no boundary layer was observed in the regions which have no topological connection with the merging site. All cases of LLBL observations are located downstream from a specific boundary. This boundary coincides with the first magnetospheric field line touching the reconnection region and can be located in a wide local time region depending on the instant IMF direction. Even the LLBL on closed field lines shows the tendency to be concentrated in the vicinity of this boundary. Thus we show that all types of observed LLBLs are linked to reconnection sites predicted by the antiparallel merging model.  相似文献   

6.
    
网络任务周期普遍较长,为了有效暴露网络传输延迟故障,可靠性试验时间往往是其任务周期数倍,否则会造成样本数量少、试验结果置信度低的问题.为此,针对通信网M/M/1排队模型,分析其延迟故障机理,应用相似理论推导建立了及时可靠性相似准则,得到了加速模型,并应用OPNET仿真平台对其进行了验证,分别阐述了数据到达强度不变和变化两种情况下该模型的应用方式,仿真结果表明正常应力作用下的原始网络和短时高应力作用下的相似网络及时可靠性误差小,且加速模型的效用不随故障阈值、应力增加倍数变化.  相似文献   

7.
利用Colorado大学公开发布的2001-2008年CHAMP和GRACE-A/B三颗卫星加速度计反演的400km高度上的大气密度数据,以大气模式NLRMSISE-00为参考,分析反演数据与模式值的误差特点、产生误差的原因、密度的变化及合理性,并通过卫星轨道两行根数(TLE)的反演结果进行验证,主要结论如下.CHAMP密度值整体稍高于GRACE-A/B,CHAMP密度与模式值之间的误差整体小于GRACE-A/B,2007-2008年 GRACE-A/B与模式的相对误差变化起伏较大.2001年CHAMP与模式存在整体偏差,通过相似空间环境条件下的密度变化比对以及利用TLE的反演结果验证,确定2001年的CHAMP反演密度整体偏低.CHAMP及GRACE-A/B密度变化个例显示,卫星密度值会出现一些个性化特征,使用时应根据需求进行分析处理.研究结果可为合理应用该数据提供参考.   相似文献   

8.
利用GRACE(Gravity Recovery And Climate Experiment)和CHAMP(Challenging Mini-Satellite Payload)卫星2002-2008年的大气密度数据与NRLMSISE-00大气模型密度结果进行比较,分析了模型密度误差及其特点.结果显示,NRLMSISE-00大气模型计算的密度值普遍偏大,其相对误差随经纬度变化,在高纬度相对较小;相对误差随地方时变化,在02:00LT和15:00LT左右较大,10:00LT和20:00LT左右较小.通过模型密度相对误差与太阳F10.7指数的对比分析发现,在太阳活动低年模型相对误差最大,而在太阳活动高年相对误差较小;将模型结果分别与GRACEA/B双星和CHAMP卫星的密度数据进行比较,发现对于轨道高度更高的GRACE卫星轨道,模型相对误差更大;在地磁平静期,相对误差与地磁ap指数(当前3h)相关性不强,但是在大磁暴发生时,误差急剧增大.   相似文献   

9.
比较BL(Baldwin-Lomax)湍流模型的内层模型与Smagorinsky亚格子模型,两者的主要差别在于湍流尺度的计算方法不同,而RANS(Reynolds Average Numerical Simulation)方程组与LES(Large Eddy Simulation)方程组在形式上又是相同的.基于这两点,发展了RANS/LES混合模型.该模型是在网格滤波尺度与到壁面的距离相等处将流场分区,在近壁区直接求解RANS方程组,在远离壁面区域,求解LES方程组.为了保证湍流粘性系数在内外层分界处的光滑过渡,内外层湍流粘性系数通过混合函数连接.混合方法减轻了对壁面附近网格分辨率的要求和时间步长的限制,因此比LES所需的计算成本少.用该混合模型模拟了绕双椭球的高超音复杂流场,结果表明采用混合模型可以准确地模拟可压缩湍流流场.   相似文献   

10.
在电离层中释放六氟化硫时,释放初期的六氟化硫流速及流量等条件是影响释放效应仿真的重要因素,对仿真结果的准确性具有一定的影响.传统的六氟化硫释放引起的电离层效应仿真中并未讨论.基于Fluent流场仿真软件,针对不同释放初始条件并结合六氟化硫容器的结构,对六氟化硫释放过程中温度、压强以及喷口流速、流量等参数变化情况进行仿真计算,得到了以上参量在释放过程中的变化情况,并将其作为电离层化学物质释放三维动力学模型的初始参数,获得了更加精确的六氟化硫电离层释放效应仿真结果.   相似文献   

11.
The Quasi-Zenith Satellite System (QZSS) established by the Japan Aerospace Exploration Agency mainly serves the Asia-Pacific region and its surrounding areas. Currently, four in-orbit satellites provide services. Most users of GNSS in the mass market use single-frequency (SF) receivers owing to the low cost. Therefore, it is meaningful to analyze and evaluate the contribution of the QZSS to SF precise point positioning (PPP) of GPS/BDS/GLONASS/Galileo systems with the emergence of GNSS and QZSS. This study compares the performances of three SF PPP models, namely the GRoup and PHase Ionospheric Correction (GRAPHIC) model, GRAPHIC with code observation model, and an ionosphere-constrained model, and evaluated the contribution of the QZSS to the SF PPP of GPS/BDS/GLONASS/Galileo systems. Moreover, the influence of code bias on the SF PPP of the BDS system is also analyzed. A two-week dataset (DOY 013–026, 2019) from 10 stations of the MGEX network is selected for validation, and the results show that: (1) For cut-off elevation angles of 15, 20, and 25°, the convergence times for the static SF PPP of GLONASS + QZSS are reduced by 4.3, 30.8, and 12.7%, respectively, and the positioning accuracy is similar compared with that of the GLONASS system. Compared with the BDS single system, the convergence times for the static SF PPP of BDS + QZSS under 15 and 25° are reduced by 37.6 and 39.2%, the horizontal positioning accuracies are improved by 18.6 and 14.1%, and the vertical components are improved by 13.9 and 21.4%, respectively. At cut-off elevation angles of 15, 20, and 25°, the positioning accuracy and precision of GPS/BDS/GLONASS/Galileo + QZSS is similar to that of GPS/BDS/GLONASS/Galileo. And the convergence times are reduced by 7.4 and 4.3% at cut-off elevation angles of 20 and 25°, respectively. In imitating dynamic PPP, the QZSS significantly improves the positioning accuracy of BDS and GLONASS. However, QZSS has little effect on the GPS-only, Galileo-only and GPS/BDS/GLONASS/Galileo. (2) The code bias of BDS IGSO and MEO cannot be ignored in SF PPP. In static SF PPP, taking the frequency band of B1I whose multipath combination is the largest among the frequency bands as an example, the vertical component has a systematic bias of approximately 0.4–1.0 m. After correcting the code bias, the positioning error in the vertical component is lower than 0.2 m, and the positioning accuracy in the horizontal component are improved accordingly. (3) The SF PPP model with ionosphere constraints has a better convergence speed, while the positioning accuracy of the three models is nearly equal. Therefore the GRAPHIC model can be used to get good positioning accuracy in the absence of external ionosphere products, but its convergence speed is slower.  相似文献   

12.
旋翼/涡轴发动机的自适应模型   总被引:3,自引:0,他引:3  
基于卡尔曼滤波器研究旋翼/涡轴发动机的机载自适应模型.采用拟合法建立了状态变量模型,并将发动机性能蜕化参数作为增广的状态变量,设计了卡尔曼滤波器,从而可以根据可测参数的偏离量估计出发动机部件性能蜕化值,最后将部件性能蜕化值用于对机载模型中不可测性能参数的修正,从而使机载模型能适应发动机的非额定工作状况.通过数字仿真表明,建立的机载自适应模型能真实反映发动机的工作状况,并且在全包线范围内该模型都具有比较好的鲁棒性和实时性.  相似文献   

13.
The measurements of positive ion composition in the high latitude D-region have revealed an excess of 34+ under distrubed conditions which has been interpreted as H2O2+. At the same altitude range near the transition height oxonium ions were measured as well. This paper presents a new model for the production and loss of oxonium ions with their production from H2O2+ + H2O → H3O+ + HO2 and their loss by attachment of N2 and/or CO2. A reaction constant of 8.5×10?28 (300/T)4 cm6s?1 has been obtained for the three body attachment H3O+ + CO2 + M → H3O+.CO2 + M from the measured density profile of 63+ in flight 18.1020. Mesospheric H2O and H2O2 densities are inferred from measurements of four high latitude ion compositions based on the oxonium model. The mixing ratios of hydrogen peroxide are up to two orders of magnitude higher compared to previous model calculations. In order to explain the missing production of odd hydrogen, we consider larger O(1D) densities, surface reactions of O(3P) on particles, and cathalytic photodissociation of water vapor on aerosol particles.  相似文献   

14.
利用CHAMP/STAR加速度数据反演的热层大气密度与NRLMSISE-00模式反演的热层大气密度进行比较, 结果表明, 热层大气密度在春秋季期间高于冬夏季, 并且太阳活动高年比低年更加显著; 日照面和阴影区大气密度的比值在低纬地区由太阳活动高年的4下降到太阳活动低年的2左右, 中纬地区大约由3变化到1.5, 高纬地区变化较小; NRLMSISE-00模式能够较好地模拟热层大气密度的变化趋势, 但是磁暴期间模式精度较差. 统计结果表明, 模式整体比反演结果偏高, 2002-2008年相对偏差分别为16.512%, 20.004%, 18.915%, 18.245%, 25.161%, 33.261%和41.980%; NRLMSISE-00模式在高纬地区的相对偏差为27.337%, 高于中低纬地区的24.047%; 模式在中等太阳活动水平相对偏差较为稳定, 基本在15%左右.   相似文献   

15.
氢氧发动机推力室化学反应流场计算   总被引:6,自引:2,他引:4  
采用弱耦合点隐式方法的MacCormack格式对氢氧火箭发动机推力室化学反应粘性流场进行数值模拟.数值模拟时采用6种组分、8个反应有限速率的化学反应模型,湍流模型采用Baldwin-Lomax代数湍流模型.数值模拟得到了流场参数在燃烧室和喷管中的分布.结果分析表明,得到的数值模拟结果与理论分析一致,说明结果是可靠的.本文的工作为氢氧火箭发动机喷管设计提供了依据,并为进一步开展火箭发动机推力室有化学反应的两相流动的数值模拟打下了基础.  相似文献   

16.
基于北斗卫星导航系统(BDS)和全球定位系统(GPS)实测电离层穿刺点(IPP)数据,结合国际参考电离层(IRI)经验模型历史数据,提出一种对区域二维电离层总电子含量(TEC)进行高精度建模的方法.针对缺乏穿刺点的区域内短时间电离层建模时精度较低且各时段穿刺点空间分布不同的问题,该方法使用IRI模型在建模区域内均匀添加虚拟穿刺点数据,并根据与实测穿刺点的距离,使用构造的权重计算公式赋予其动态权重值,通过加权最小二乘法进行球谐模型参数解算.与欧洲定轨中心(CODE)发布的全球电离层图(GIM)进行数据比对发现,相对于只使用BDS/GPS实测穿刺点数据的建模方法,利用本文建模方法计算获得的垂直总电子含量(VTEC)值对缺乏实测穿刺点的区域精度有明显的提升.   相似文献   

17.
    
提出了一种捷联惯性/天文/雷达高度表的弹道导弹组合导航方法。针对传统SINS/星敏感器组合无法从根本上解决惯导速度位置误差发散的问题,引入RA测量数据,以海拔计算高度与海拔观测高度的差值作为新的量测量,并推导了全微分方程,结合姿态误差角建立4维观测模型,针对弹道中段导航,以SINS误差方程作为系统状态模型,通过扩展卡尔曼滤波(EKF)进行组合导航解算。仿真结果表明,当SINS精度为惯导级、星敏感器测量精度10″、RA测量精度50 m时,经过1 810 s的飞行,再入点时刻速度误差小于1 m/s、圆概率误差(CEP)为1.2 km,比传统SINS/CNS方法速度和位置误差分别减小了76.1%和65.0%。  相似文献   

18.
直升机旋翼/动力/传动系统模型及耦合影响   总被引:10,自引:2,他引:8  
为了提供有效的避免系统共振的设计措施,针对某型直升机的实际情况建立了该型号直升机的发动机、传动系统与旋翼、尾桨组成的机械扭振系统的分析模型.用特征分析和阻抗匹配方法对系统各个模态固有特性包括固有频率和振型进行了对比计算和结果分析.研究了模态固有特性在扭振系统耦合前后的变化,以及旋翼变转速对孤立桨叶和耦合后旋翼固有特性的影响,得出了避免系统共振的设计措施.   相似文献   

19.
The time series of hourly electron density profiles N(h) obtained from 27 ionosonde stations distributed world-wide have been used to obtain N(h) average profiles on a monthly basis and to extract the expected bottom-side parameters that define the IRI profile under quiet conditions. The time series embrace the time interval from 1998 to 2006, which practically contains the entire solar cycle 23. The Spherical Harmonic Analysis (SHA) has been used as an analytical technique for modeling globally the B0 and B1 parameters as general functions on a spherical surface. Due to the irregular longitudinal distribution of the stations over the globe, it has been assumed that the ionosphere remains approximately constant in form for a given day under quiet conditions for a particular coordinate system. Since the Earth rotates under a Sun-fixed system, the time differences have been considered to be equivalent to longitude differences. The time dependence has been represented by a two-degree Fourier expansion to model the annual and semiannual variations and the year-by-year analyses of the B0 and B1 have furnished nine sets of spherical harmonic coefficients for each parameter. The spatial–temporal yearly coefficients have been further expressed as linear functions of Rz12 to model the solar cycle dependence. The resultant analytical model provides a tool to predict B0 and B1 at any location distributed among the used range of latitudes (70°N–50°S) and at any time that improves the fit to the observed data with respect to IRI prediction.  相似文献   

20.
Nighttime thermospheric meridional winds aligned to the magnetic meridian have been inferred using hF and hpF2 ionosonde data taken from two equatorial stations, Manaus (2.9°S, 60.0°W, dip latitude 6.0°N) and Palmas (10.17°S, 48.2°W, dip latitude 6.2°S), and one low-latitude station, Sao Jose dos Campos (23.21°S, 45.86°W, dip latitude 17.26°S), during geomagnetic quiet days of August and September, 2002. Using an extension of the ionospheric servo model and a simple formulation of the diffusive vertical drift velocity, the magnetic meridional component of the thermospheric neutral winds is inferred, respectively, at the peak (hpF2) and at the base (hF) heights of the F region over Sao Jose dos Campos. An approach has been included in the models to derive the effects of the electrodynamic drift over Sao Jose dos Campos from the time derivative of hpF2 and hF observed at the equatorial stations. The magnetic meridional winds inferred from the two methods, for the months of August and September, are compared with winds calculated using the HWM-90 model and with measurements from Fabry–Perot technique. The results show varying agreements and disagreements. Meridional winds calculated from hpF2 ionospheric data (servo model) may produce errors of about 59 m/s, whereas the method calculated from the F-region base height (hF) ionospheric data gives errors of about 69 m/s during the occurrence of equatorial spread-F.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号