首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 294 毫秒
1.
The SOHO/MDI data provide the uniform time series of the synoptic magnetic maps which cover the period of the cycle 23 and the beginning of the cycle 24. It is very interesting period because of the long and deep solar minimum between the cycles 23 and 24. Synoptic structure of the solar magnetic field shows variability during solar cycles. It is known that the magnetic activity contributes to the solar irradiance. The axisymmetrical distribution of the magnetic flux (Fig. 3c) is closely associated with the ‘butterfly’ diagram in the EUV emission (Benevolenskaya et al., 2001). And, also, the magnetic field (B) shows the non-uniform distributions of the solar activity with longitude, so-called ‘active zones’, and ‘coronal holes’ in the mid-latitude. Polar coronal holes are forming after the solar maxima and they persist during the solar minima. SOHO/EIT data in the emission of Fe XII (195 Å) could be a proxy for the coronal holes tracking. The active longitudinal zones or active longitude exist due to the reappearance of the activity and it is clearly seen in the synoptic structure of the solar cycle. On the descending branch of the solar cycle 23 active zones are less pronounced comparing with previous cycles 20, 21 and 22. Moreover, the weak polar magnetic field precedes the long and deep solar minimum. In this paper we have discussed the development of solar cycles 23 and 24 in details.  相似文献   

2.
We show that the higher range of the heliolongitudinal asymmetry of the solar wind speed in the positive polarity period (A > 0) than in the negative polarity period (A < 0) is one of the important reasons of the larger amplitudes of the 27-day variation of the galactic cosmic ray (GCR) intensity in the period of 1995–1997 (A > 0) than in 1985–1987 (A < 0). Subsequently, different ranges of the heliolongitudinal asymmetry of the solar wind speed jointly with equally important corresponding drift effect are general causes of the polarity dependence of the amplitudes of the 27-day variation of the GCR intensity. At the same time, we show that the polarity dependence is feeble for the last unusual minimum epoch of solar activity 2007–2009 (A < 0); the amplitude of the 27-day variation of the GCR intensity shows only a tendency of the polarity dependence. We present a three dimensional (3-D) model of the 27-day variation of GCR based on the Parker’s transport equation. In the 3-D model is implemented a longitudinal variation of the solar wind speed reproducing in situ measurements and corresponding divergence-free interplanetary magnetic field (IMF) derived from the Maxwell’s equations. We show that results of the proposed 3-D modeling of the 27-day variation of GCR intensity for different polarities of the solar magnetic cycle are in good agreement with the neutron monitors experimental data. To reach a compatibility of the theoretical modeling with observations for the last minimum epoch of solar activity 2007–2009 (A < 0) a parallel diffusion coefficient was increased by ∼40%.  相似文献   

3.
Active regions on the solar surface are known to possess magnetic helicity, which is predominantly negative in the northern hemisphere and positive in the southern hemisphere. Choudhuri et al. [Choudhuri, A.R. On the connection between mean field dynamo theory and flux tubes. Solar Phys. 215, 31–55, 2003] proposed that the magnetic helicity arises due to the wrapping up of the poloidal field of the convection zone around rising flux tubes which form active regions. Choudhuri [Choudhuri, A.R., Chatterjee, P., Nandy, D. Helicity of solar active regions from a dynamo model. ApJ 615, L57–L60, 2004] used this idea to calculate magnetic helicity from their solar dynamo model. Apart from getting broad agreements with observational data, they also predict that the hemispheric helicity rule may be violated at the beginning of a solar cycle. Chatterjee et al. [Chatterjee, P., Choudhuri, A.R., Petrovay, K. Development of twist in an emerging magnetic flux tube by poloidal field accretion. A&A 449, 781–789, 2006] study the penetration of the wrapped poloidal field into the rising flux tube due to turbulent diffusion using a simple 1-d model. They find that the extent of penetration of the wrapped field will depend on how weak the magnetic field inside the rising flux tube becomes before its emergence. They conclude that more detailed observational data will throw light on the physical conditions of flux tubes just before their emergence to the photosphere.  相似文献   

4.
Three major hypotheses have been proposed to explain the well-known semiannual variation of geomagnetic activity, maxima at equinoxes and minima at solstices. This study examined whether the seasonal variation of equinoctial geomagnetic activity is different in periods of opposite solar magnetic polarity in order to understand the contribution of the interplanetary magnetic field (IMF) in the Sun-Earth connection. Solar magnetic polarity is parallel to the Earth’s polarity in solar minimum years of odd/even cycles but antiparallel in solar minimum years of even/odd cycles. The daily mean of the aa, Aa indices during each solar minimum was compared for periods when the solar magnetic polarity remained in opposite dipole conditions. The Aa index values were used for each of the three years surrounding the solar minimum years of the 14 solar cycles recorded since 1856. The Aa index reflects seasonal variation in geomagnetic activity, which is greater at the equinoxes than at the solstices. The Aa index reveals solar magnetic polarity dependency in which the geomagnetic activity is stronger in the antiparallel solar magnetic polarity condition than in the parallel one. The periodicity in semiannual variation of the Aa index is stronger in the antiparallel solar polar magnetic field period than in the parallel period. Additionally, we suggest the favorable IMF condition of the semiannual variation in geomagnetic activity. The orientation of IMF toward the Sun in spring and away from the Sun in fall mainly contributes to the semiannual variation of geomagnetic activity in both antiparallel and parallel solar minimum years.  相似文献   

5.
We study the 27-day variations of the solar wind velocity, galactic cosmic ray (GCR) intensity and anisotropy in the last minimum epoch of solar activity (2007–2009, A < 0). The average amplitude of the 27-day variation of the galactic cosmic ray anisotropy (A27A) in the current minimum epoch of solar activity (2007–2009, A < 0) is lesser than in previous positive polarity period as it is expected from the drift theory. So, polarity dependence rule for the 27-day variation of the GCR anisotropy is fully kept. It is a universal principle for the amplitudes of the 27-day variation of the GCR anisotropy. At the same time, the average amplitude of the 27-day variation of the GCR intensity (A27I) remains at the same level as for previous minimum epoch 1995–1997 (A > 0) showing by the same token an violation of its polarity dependence rule established earlier. We assume that this phenomenon could be generally related with the well established 27-day variation of the solar wind velocity being in anti-correlation with the similar changes of the 27-day variation of the GCR intensity. Generally, a character of the heliolongitudinal asymmetry of spatial large-scale structure of the solar wind velocity (SWV) established in the recent minimum epoch, preferentially pronounces in the behavior of the 27-day variation of the GCR intensity than anisotropy. The formation of the 27-day variation of the GCR anisotropy preferentially takes place in a restricted disk like local vicinity in the helioequatorial region, whilst the 27-day variation of the GCR intensity is formed in the global three dimensional vicinity of the heliosphere.  相似文献   

6.
We demonstrate that the general features of the radial and azimuthal components of the anisotropy of galactic cosmic rays can be studied by the harmonic analysis method using data from an individual neutron monitor with cut off rigidity <5 GV. In particular, we study the characteristics of the 27-day (solar rotation period) variations of the galactic cosmic ray intensity and anisotropy, solar wind velocity, interplanetary magnetic field strength and sunspot number. The amplitudes of the 27-day variations of the galactic cosmic ray anisotropy are greater, and the phases more clearly established, in A > 0 polarity periods than in A < 0 polarity periods at times of minimum solar activity. The phases of the 27-day variations of the galactic cosmic rays intensity and anisotropy are opposite with respect to the similar changes of the solar wind velocity in A > 0 polarity periods. No significant dependence of the amplitude of the 27-day variation of the galactic cosmic ray anisotropy on the tilt angle of the heliospheric neutral sheet is found. Daily epicyclegrams obtained by Chree’s method show that the 27-day variations of the galactic cosmic ray anisotropy during A > 0 polarity periods follow elliptical paths with the major axes oriented approximately along the interplanetary magnetic field. The paths are more irregular during A < 0 polarity periods.  相似文献   

7.
We investigate properties of large (>20%) and sharp (<10 min) solar wind ion flux changes using INTERBALL-1 and WIND plasma and magnetic field measurements from 1996 to 1999. These ion flux changes are the boundaries of small-scale and middle-scale solar wind structures. We describe the behavior of the solar wind velocity, temperature and interplanetary magnetic field (IMF) during these sudden flux changes. Many of the largest ion flux changes occur during periods when the solar wind velocity is nearly constant, so these are mainly plasma density changes. The IMF magnitude and direction changes at these events can be either large or small. For about 55% of the ion flux changes, the sum of the thermal and magnetic pressure are in balance across the boundary. In many of the other cases, the thermal pressure change is significantly more than the magnetic pressure change. We also attempted to classify the types of discontinuities observed.  相似文献   

8.
9.
The effect of a latitude-dependent solar wind speed on a Fisk heliospheric magnetic field [Fisk, L. A. Motion of the footpoints of heliospheric magnetic field lines at the Sun: implications for recurrent energetic particle events at high heliographic latitudes. J. Geophys. Res. 101, 15547–15553, 1996] was first discussed by Schwadron and Schwadron and McComas [Schwadron, N.A. An explanation for strongly underwound magnetic field in co-rotating rarefaction regions and its relationship to footpoint motion on the the sun. Geophys. Res. Lett. 29, 1–8, 2002. and Schwadron, N.A., McComas, D.J. Heliospheric “FALTS”: favored acceleration locations at the termination shock. Geophys. Res. Lett. 30, 41–1, 2003]. Burger and Sello [Burger, R.A., Sello, P.C. The effect on cosmic ray modulation of a Parker field modified by a latitudinal-dependent solar wind speed. Adv. Space Res. 35, 643–646, 2005] found a significant effect for a simplified 2D version of a latitude-dependent Fisk-type field while Miyake and Yanagita [Miyake, S., Yanagita, S. The effect of a modified Parker field on the modulation of the galactic cosmic rays. In: Proceedings of 30th International Cosmic Ray Conference. Merida, Mexico, vol. 1, 445–448, 2007] found a smaller effect. The current report improves on a previous attempt Hitge and Burger [Hitge, M., Burger, R.A. The effect of a latitude-dependent solar wind speed on cosmic-ray modulation in a Fisk-type heliospheric magnetic field. In: Proceedings of 30th International Cosmic Ray Conference. Merida, Mexico, vol. 1, pp. 449–450, 2007] where the global change in the solar wind speed and not the local speed gradient was emphasized. The sheared Fisk field of Schwadron and McComas [Schwadron, N.A., McComas, D.J. Heliospheric “FALTS”: Favored acceleration locations at the termination shock. Geophys. Res. Lett. 30, 41–1, 2003.) is similar to the current Schwadron–Parker hybrid field. Little difference is found between the effects of a Parker field and a Schwadron–Parker hybrid field on cosmic-ray modulation, in contrast to the results of Burger and Sello and Miyake and Yanagita [Burger, R.A., Sello, P.C. The effect on cosmic ray modulation of a Parker field modified by a latitudinal-dependent solar wind speed. Adv. Space Res. 35, 643–646, 2005 and Miyake, S., Yanagita, S. The effect of a modified Parker field on the modulation of the galactic cosmic rays. In: Proceedings of 30th International Cosmic Ray Conference. Merida, Mexico, vol. 1, pp. 445–448, 2007]. The two-dimensional approximation used by these authors is therefore inadequate to model the complexities of the actual three-dimensional field. We also show that a Fisk-type field with a latitude-dependent solar wind speed (Schwadron–Parker hybrid field) decreases both the relative amplitude of recurrent cosmic ray intensity variations and latitude gradients and yields similar constants of proportionality for these quantities as for the constant solar wind speed case.  相似文献   

10.
A puzzling observation of solar wind MHD turbulence is the often seen Kolmogorov scaling of k-5/3k-5/3, even though the solar wind MHD turbulence is dominated by Alfvénic fluctuations. Recently Li et al. (2011) proposed that the presence of current sheets may be the cause of the Kolmogorov scaling. Here, using a cell model of the solar wind we examine the effect of current sheets on the power spectrum of the solar wind magnetic field. We model the solar wind as multiple cells separated by current sheets. We prescribe the spectra of turbulent magnetic field in individual cells as IK-like and examine the spectra along trajectories that cross multiple boundaries. We find that these spectra become softer and are consistent with the Kolmogorov-scaling. Our finding supports our recent proposal of Li et al. (2011).  相似文献   

11.
We present a comparison of large and sharp solar wind dynamic pressure changes, observed by several spacecraft, with fast disturbances in the magnetospheric magnetic field measured by the GOES-8, 9 and 10 geosynchronous satellites. Almost 400 solar wind pressure changes in the period 1996–2003 were selected for this study. Using the large statistics we confirmed that increases (decreases) in the dynamic pressure always results in increases (decreases) in the magnitude of geosynchronous Bz component. The amplitude of the geosynchronous Bz response strongly depends on the location of observer relative to the noon meridian, from the value of solar wind pressure before the disturbance arriving and firstly – from the amplitude of the pressure change.  相似文献   

12.
We have studied the long-term, steady-state, solar cycle modulation of galactic cosmic ray intensity for seven cycles (17–23). Our analysis is based on the data obtained with a variety of detectors on earth (neutron monitors of the global network and muon detectors) as well as telescopes flown on high altitude balloons and on-board near-earth satellites. The median rigidity of response for these detectors to galactic cosmic ray spectrum lies in the range 1–70 GV. We correlate cosmic ray data to sunspot numbers, Ap, solar wind bulk speed (V), magnetic field (B), as well as to the cycle maximum (M), minimum (m), and the epochs of the solar polar field reversals. This enables us to derive the rigidity dependence of observations, and helps us to define the characteristics of the modulation function in the heliosphere.  相似文献   

13.
The differential rotation of the patterns of the large-scale solar magnetic field during solar activity cycles 20 and 21 is investigated. Compact magnetic elements with the polarity of the general solar magnetic field have larger speed of rotation than the elements with the opposite polarity. The surface of the Sun was divided by 10°-zones. In all of them the average rotation rate of the magnetic elements with negative polarity is little higher than that of the magnetic elements with positive polarity, except for 50°-zone of the south hemisphere and at the 10° latitude of the north hemisphere.

The rates of differential rotation for large-scale magnetic elements with negative and positive polarities have similar behavior for both cycles of the solar activity.

The rotation rate varies at polarity reversal of the circumpolar magnetic fields. For the cycle No 20 in 1969–1970 the threefold reversal took place in the northern hemisphere and variations of rotation rate can be noticed for magnetic elements both with positive and negative polarity for each 10°-zone in the same hemisphere.  相似文献   


14.
Using nine years (1995–2003) of solar wind plasma and magnetic field data, solar sunspot number, and geomagnetic activity data, we investigated the geomagnetic activity associated with magnetic clouds (MCs), magnetic cloud-like structures (MCLs), and interplanetary shock waves. Eighty-two MCs and one hundred and twenty-two MCLs were identified by using solar wind and magnetic field data from the WIND mission, and two hundred and sixty-one interplanetary shocks were identified over the period of 1995–2003 in the vicinity of Earth. It is found that MCs are typically more geoeffective than MCLs or interplanetary shocks. The occurrence frequency of MCs is not well correlated with sunspot number. By contrast, both occurrence frequency of MCLs and sudden storm commencements (SSCs) are well correlated with sunspot number.  相似文献   

15.
The paper presents results of our study of dependence of geomagnetic activity from geoeffective parameters taking into account mutual orientation of the interplanetary magnetic field, electric field of the solar wind and geomagnetic moment. We attract a reconnection model elaborated by us made allowance for changes of geometry of the solar wind–magnetosphere interaction during annual and diurnal motions of the Earth. We take as our data base the interplanetary magnetic field and solar wind velocity measured at 1 a.u. at ecliptic plane for the period of 1963–2005 and Kp, Dst, am indices. Taken as a whole a geoeffective parameter suggested by us explains 95% of observed variations of the indices. Changes of the geometric factor determined by mutual orientation of the solar wind electric field and geomagnetic moment explain larger than 75% of observed statistical variations of Dst and am indices. Based on our results we suggest a new explanation of semi-annual and UT variation of geomagnetic activity.  相似文献   

16.
The high-speed plasma streams in the solar wind are investigated during the solar cycles nos. 20–22 (1964–1996), separately on the two types of streams according to their solar origin: the HSPS produced by coronal holes (co-rotating) and the flare-generated, in keeping with the classification made in different catalogues. The analysis is performed taking into account the following high-speed stream parameters: the durations (in days), the maximum velocities, the velocity gradients and, the importance of the streams. The time variation of these parameters and the high-speed plasma streams occurrence rate show an 11-year periodicity with some differences between the solar cycles considered. A detailed analysis of the high-speed stream 11-year cycles is made by comparison with the “standard” cycles of the sunspot relative number (Wolf number). The different behaviour of the high-speed stream parameters between even and odd solar cycles could be due to the 22-year solar magnetic cycle. The increased activity of the high-speed plasma streams on the descendant phases of the cycles, regardless of their solar sources, proves the existence of some special local conditions of the solar plasma and the magnetic field on a large scale that allow the ejection of the high energy plasma streams. This fact has led us to the analysis the stream parameters during the different phases of the solar cycles (minimum, ascendant, maximum and, descendant) as well as during the polar magnetic field reversal intervals. The differences between the phases considered are pointed out. The solar cycles 20 and 22 reveal very similar dynamics of the flare-generated and also co-rotating stream parameters during the maximum, descendant and reversal intervals. This fact could be due to their position in a Hale Cycle (the first component of the 22-year solar magnetic cycle). The 21st solar cycle dominance of all co-rotating stream parameters against the 20th and 22nd solar cycle ones, during almost all phases, could be due to the same structure of a Hale Cycle – solar cycle 21 is the second component in a 22-year SC. During the reversal intervals, all high-speed stream parameters have comparable values with the ones of the maximum phases of the cycles even if this interval contains a small part of the descendant branch (solar cycles 20 and 22).  相似文献   

17.
本文应用十八、十九周下降期的地磁观测资料导出了对应时期太阳风速度的卡林顿经度变化,并结合由极盖区地磁观测导出的行星际磁扇形结构确定十八、十九周下降期太阳南北磁极极性、类偶极点的太阳余纬和卡林顿经度,从而确定了该时期的冕洞分布,并与二十周冕洞分布进行比较.   相似文献   

18.
Statistical properties of the daily averaged values of the solar activity (sunspot numbers, total solar irradiance and 10.7 cm radio emission indices), the solar wind plasma and the interplanetary magnetic field parameters near the Earth’s orbit are investigated for a period from 1964 to 2002 covering the maxima of four solar cycles from 20th to 23rd. Running half-year averages show significant solar cycle variations in the solar activity indices but only marginal and insignificant changes in comparison with background fluctuations for heliospheric bulk plasma and magnetic field parameters. The current 23rd cycle maximum is weaker than 21st and 22nd maxima, but slightly stronger than 20th cycle in most of solar and heliospheric manifestations.  相似文献   

19.
In this paper we research the relationship between solar activity and the weather on Earth. This research is based on the assumption that every ejection of magnetic field energy and particles from the Sun (also known as Solar wind) has direct effects on the Earth’s weather. The impact of coronal holes and active regions on cold air advection (cold fronts, precipitation, and temperature decrease on the surface and higher layers) in the Belgrade region (Serbia) was analyzed. Some active regions and coronal holes appear to be in a geo-effective position nearly every 27 days, which is the duration of a solar rotation. A similar period of repetitiveness (27–29 days) of the passage of the cold front, and maximum and minimum temperatures measured at surface and at levels of 850 and 500 hPa were detected. We found that 10–12 days after Solar wind velocity starts significantly increasing, we could expect the passage of a cold front. After eight days, the maximum temperatures in the Belgrade region are measured, and it was found that their minimum values appear after 12–16 days. The maximum amount of precipitation occurs 14 days after Solar wind is observed. A recurring period of nearly 27 days of different phases of development for hurricanes Katrina, Rita and Wilma was found. This analysis confirmed that the intervals of time between two occurrences of some particular meteorological parameter correlate well with Solar wind and A index.  相似文献   

20.
Different kinds of coronal holes are sources of different kind of solar winds. A successful solar wind acceleration model should be able to explain all those solar winds. For the modeling it is important to find a universal relation between the solar wind physical parameters, such as velocity, and coronal physical parameters such as magnetic field energy. To clarify the physical parameters which control the solar wind velocity, we have studied the relation between solar wind velocity and properties of its source region such as photospheric/coronal magnetic field and the size of each coronal hole during the solar minimum. The solar wind velocity structures were derived by using interplanetary scintillation tomography obtained at Solar-Terrestrial Environment Laboratory, Japan. Potential magnetic fields were calculated to identify the source region of the solar wind. HeI 1083 nm absorption line maps obtained at Kitt Peak National Solar Observatory were used to identify coronal holes. As a result, we found a relation during solar minimum between the solar wind velocity and the coronal magnetic condition which is applicable to different kind of solar winds from different kind of coronal holes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号