首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Variations of stratospheric temperature are connected with changes of the solar wind dynamic pressure. This effect could be explained in the framework of the global electric circuit concept. The energy of the solar wind modulates the energy balance of the global electric circuit where the stratosphere could be one of its other elements. The conductivity of the stratosphere in the polar region is equal to and sometimes more than the conductivity of the ground surface covered by ice or permafrost. Re-distribution of the global electric circuit currents between the stratosphere and the ground surface determines a different relation between solar wind dynamics and variations of the stratospheric temperature during different seasons.  相似文献   

2.
In the present paper dependences of substorm activity on the solar wind velocity and southward component (Bz) of interplanetary magnetic field (IMF) during the main phase of magnetic storms, induced by the CIR and ICME events, is studied. Strong magnetic storms with close values of Dstmin?≈??100?±?10?nT are considered. For the period of 1979–2017 there are selected 26 magnetic storms induced by the CIR and ICME (MC?+?Ejecta) events. It is shown that for the CIR and ICME events the average value of the AE index (AEaver) at the main phase of magnetic storm correlates with the solar wind electric field. The highest correlation coefficient (r?=?0.73) is observed for the magnetic storms induced by the CIR events. It is found that the AEaver for magnetic storms induced by ICME events, unlike CIR events, increases with the growth of average value of the southward IMF Bz module. The analysis of dependence between the AEaver and average value of the solar wind velocity (Vswaver) during the main phase of magnetic storm shows that in the CIR events, unlike ICME, the AEaver correlates on the Vswaver.  相似文献   

3.
In this work we studied the spatial and temporal structure of long-term effects of solar activity (SA) and galactic cosmic ray (GCR) variations on the lower atmosphere circulation as well as possible reasons for the peculiarities of this structure. The study revealed a strong latitudinal and regional dependence of SA/GCR effects on pressure variations in the lower troposphere which seems to be determined by specific features of baric systems formed in different regions. The temporal structure of SA/GCR effects on the troposphere circulation at high and middle latitudes is characterized by a roughly 60-year periodicity which is apparently due to the epochs of the large-scale atmospheric circulation. It is suggested that a possible mechanism of long-term effects of solar activity and cosmic ray variations on the troposphere circulation involves changes in the evolution of the polar vortex in the stratosphere of high latitudes, as well as planetary frontal zones.  相似文献   

4.
本文利用MHD激波跳跃条件的精确解,具体讨论了行星际背景太阳风状态参数Alfvén马赫数M1、等离子体β1参数和磁场角θ1的变化对地球磁鞘区中磁场起伏特性及其分布的影响.主要结果是:马赫数M1的变化主要控制磁场起伏特性:放大倍数、相对起伏和各向异性程度的水准高低.磁场角θ1的变化控制磁场起伏的空间分布特性.等离子体β1参数的变化,不引起磁场起伏特性的明显变化(对于实际经常发生的情况M1 8而言).M1、θ1是强控制参数,而β1是弱控制参数;磁鞘区磁场起伏对太阳风状态参数的变化响应呈现明显的晨-昏不对称性(行星际磁场位于黄道面时),响应主要发生在晨侧.晨侧的磁场起伏(或湍动)相当活跃,而昏侧相当稳定;磁鞘中不同地点磁场起伏特性对太阳风状态参数M1、β1的变化响应有大致相同的形式,而对其磁场角度θ1的变化却有迥然不同的形式.   相似文献   

5.
通过对冬季太阳风短时(天气尺度)降速与北大西洋涛动和北极涛动等北半球中高纬度环流指数的时序重叠分析,结合对1963年以来48个冬季太阳风平均速度与北极涛动等指数的相关分析发现,从短时太阳风降速到向亚极光带沉降的辐射带高能电子通量显著下降,北极涛动也有迅速的响应,这预示着从太阳风到大气环流存在天气尺度的短时关系链,在这一时间尺度现有理论中仅有“空间粒子-大气电-云微物理”联系机制能较好地解释;太阳风速度与北极涛动的正相关信号在气候尺度上也有显著体现,太阳风可能通过高能电子沉降与北半球冬季中高纬度环流相联系,这表明太阳风通过大气电-云微物理过程驱动的过程是太阳活动影响气候变化的不可忽视的途径;开展太阳风起源、空间环境与大气(环流、电场)和地磁系统的联合观测及数值模拟是揭示日地天气与气候联系的重要研究内容之一.   相似文献   

6.
The variability and systematic variations of the properties of the upper mesosphere and lower thermosphere are probably the least well known aspects of the terrestrial atmosphere. Satellite measurements of this region are very limited and rocket and remote sounding techniques do not provide comprehensive coverage. Progress is being made in theoretical studies of this region, primarily with regard to tidal effects, and some progress is being made in analyzing the relatively sparse experimental data that are available. Turbulence dynamics of the region has been studied by analyzing structure measurements at Kwajalein, wind data from Natal and systematic variations of the turbopause altitude determined from measurements of the diffusive separation of argon. One question that is being raised at this time, and it is appropriate at a time near solar maximum, is the extent of solar activity control of the properties of this region of the atmosphere. The occurrence rates and magnitudes of the turbulent diffusivity in the 70 to 90 km altitude region appear to correlate with solar activity with a time lag, as do also the incidence of aurora and the atomic oxygen green line intensity. Solar cycle dependence has been identified in mean zonal wind speeds in the 65 to 110 km altitude region above Saskatoon and in lower thermosphere temperatures measured at Heiss Island and at St. Santin. Millstone Hill data show that the mean meridional wind changes during a solar cycle. Solar cycle variations have also been detected in the stratosphere and troposphere.  相似文献   

7.
In-situ measurements of ion and neutral composition and temperature across the dayside of Venus during 1979–1980 exhibit long and short-term changes attributed to solar variations. Following solar maximum, dayside concentrations of CO+ and the neutral gas temperature are relatively smoothly modulated with a 28-day cycle reasonably matching that of the solar F10.7 and EUV fluxes. Measurements some 6–8 months earlier show less pronounced and more irregular modulation, and short-term day-to-day fluctuations in the ions and neutrals are relatively more conspicuous than in the later period. During the earlier period, the solar wind at Venu exhibits relatively large velocity enhancements, which appear to be consistent with differences in solar coronal behavior during the two periods. It is suggested that through the solar wind variations and associated changes in the draping of the interplanetary magnetic field about the dayside, fluctuating patterns of joule heating may occur, producing the observed short term ion and neutral variations. This indirect energy effect, if verified, presents a complication for quantitatively analyzing the modulation in neutral temperature and ion concentration produced by changes in direct EUV radiation.  相似文献   

8.
Satellite altimetry provides continuous and spatially regular measurements of the height of the sea surface. Sea level responds to density changes of the water, to mass changes, due to addition or reduction of water mass, and to changes in the atmosphere above it. The present study examines the influence of atmospheric effects on sea-level variability in the North-East Atlantic. The association between the height of the sea surface and the North Atlantic Oscillation (NAO) is investigated by considering different sets of altimetry measurements for which the atmospheric effects have been handled differently. Altimetry data not corrected for atmospheric effects are strongly anti-correlated with the state of the NAO, reflecting the hydrostatic response of sea-level to the NAO pressure dipole. The application of an atmospheric correction to satellite altimetry observations in the NE Atlantic decreases variability of the height time series by more than 70% and reduces the amplitude of the seasonal cycle by ∼5 cm. Altimetry data for which atmospheric effects are removed via an inverse barometer correction show a non-negligible correlation with the NAO index at some locations suggesting further indirect non-hydrostatic influences of the state of the NAO on sea level variability.  相似文献   

9.
平流层臭氧和辐射场的季节分布特征   总被引:2,自引:1,他引:1  
利用美国NCAR化学气候耦合模式WACCM3对平流层温度场、风场、臭氧及辐射场进行了模拟.结果表明,在适宜飞艇长期驻留的准零风层高度20~22km(对应大气压强范围为50~30hPa,以下均采用气压值表征对应大气高度),7-8月风速小于5m·s-1的风带可长期稳定在40°N以北.臭氧空间分布显示,在30hPa气压高度处中国地区臭氧浓度出现了带状分布,30hPa高度以下低纬度地区臭氧浓度低于中纬度地区.平流层太阳加热率的时空变化表明,在平流层上层,太阳加热率可达100×10-6K·s-1,而在平流层下层,只有10×10-6K·s-1.6-8月中国区域的太阳加热率大于9月;在100~30hPa高度内,中纬度地区太阳加热率高于低纬度地区,在30hPa高度以上,低纬度地区太阳加热率高于中纬度地区;8-9月30~40hPa高度处,太阳加热率的空间变化较小.在30hPa高度上,太阳加热率在40°N昼夜变化最大;50hPa高度处,太阳加热率的昼夜变化小于30hPa高度处,而且白天太阳加热率出现极大值的纬度明显靠北.平流层低纬度地区的长波加热率小于中纬度地区.青藏高原由于地形特殊,其6-7月的臭氧浓度、太阳加热率和长波加热率均小于同纬度其他地区.   相似文献   

10.
Possible mechanisms of solar–climatic connections, which may be of importance over short and long time intervals, are discussed. The variations of energetic balance of Earth’s climatic system for the last 50 years are estimated. It is ascertained that the imbalance between the flux of solar energy that comes to the Earth and radiates to space is of 0.1% for the last ten years. The significance is analyzed for the possible influence of variations of solar constant upon the energetic balance of the atmosphere.The physical mechanism of the influence of solar activity on climatic characteristics and the atmospheric circulation is suggested and theoretically substantiated. The mechanism is based on the redistribution in lower-troposphere of condensation nuclei by the vertical electric field. This electric field is determined by the ionosphere–Earth electric potential, which in the Polar Regions is controlled not only by tropical thunderstorms and by the galactic cosmic-ray intensity but also by solar cosmic-ray fluxes. The height redistribution in the atmosphere of condensation nuclei with a change of the electric field of the atmosphere is accompanied by a change in total latent heat (phase transition of water vapor), by changes in radiation balance, and by subsequent changes of the thermobaric field of troposphere. The results of analysis of thermobaric field variations for the periods of invasion of abnormally powerful solar cosmic ray fluxes and magnetic storms confirm the reality of manifestation of heliogeophysical disturbances.  相似文献   

11.
分别对行星际激波、太阳风动压增大事件和减小事件的地球磁场响应进行了比较. 分析结果表明, 同步轨道磁场对太阳风扰动在向阳面产生较强的正响应, 在背阳面 响应较弱且有时会出现负响应, 地磁指数SYM-H对太阳风扰动的响应为正响应. 同时还得出, 向阳侧同步轨道磁场响应幅度d Bz与地磁指数响应幅度d SYM-H、上下游动压均方差均具有较好的相关性. 地磁指数响应幅度与同步轨道磁场响应幅度相关关系在激波和动压增大事件中具有一致性, 动压减小事件出 现明显差异, 这说明激波和动压增大事件在影响地球磁场方面具有某种共性.   相似文献   

12.
太阳风和地球磁层相互作用的两种可能类型   总被引:1,自引:1,他引:0  
本文对太阳活动20周不同活动期间的太阳风参数与地磁活动性指数分别进行了相关分析,并进一步对太阳活动极大和极小年分别对Bz和太阳风参数V、T、N的时均值日方差作了分析比较。结果指出,除目前普遍认为的IMF与地磁场重联导致的磁扰外,还有一类与Bz无关,而是由高温、高速、热不均匀太阳风等离子体导致的地磁扰动类型。   相似文献   

13.
The height–season and year-to-year regularities of parameters of first and second spatial harmonics determine the structure of the stratosphere and mesosphere circulation and its variability. In the period 1992–2002 at heights 0–55 km, the amplitudes and phases of the first and second spatial harmonics in the field of temperature, geopotential height, zonal and meridional wind were calculated by the method of harmonic decomposition. Dispersion (standard or mean square deviation) of their day-to-day and year-to-year variations was calculated by their wavelength constants. Height and season patterns of variability have been estimated. The difference in height–longitude variability for wave numbers m = 1 and 2 has been discovered. At the same time, the intensity of wave disturbances for m = 1 is less than for m = 2 excluding the polar areas, where a significant variability appears at the heights 0–55 km. There is also a tendency for the intensity of year-to-year variations to decrease in comparison with day-to-day variations. In cold and warm periods the amplitude of perturbation waves with m = 2 both for day-to-day and year-to-year variations is greater than for waves with m = 1. Transient height areas in the interval of 20–30 km are more distinct for day-to-day variations of polar area.  相似文献   

14.
2000年7月空间大事件对地磁场产生了巨大影响,7月15日至18日发生大磁暴(K=9).磁暴为急始型,在我国地区初相期变幅有200—300nT,主相最大幅度有500—600nT,为多年来所罕见.在行星际磁场Bz由北向转向南向时,磁暴主相开始;南向分量达到最大值后大约2h,地磁H分量达到最小值,恢复相开始.并且,这次磁暴与太阳风也存在一定的对应关系。  相似文献   

15.
太阳高能粒子(SEP)的平均自由程是研究SEP传播的重要参数,由SEP的物理性质和太阳风物理性质决定.使用MHD-SEP模型对三维MHD背景场下的平均自由程进行了探讨,利用该模型具有可提供接近物理真实的太阳风背景场的优势,对SEP的平均自由程进行了定性分析.分别对太阳活动高年和低年选取2个卡林顿周进行模拟,定性分析其空间变化,并研究平均自由程与径向太阳风速度的相关性.结果表明:该方法得到的平均自由程空间分布与以往研究得到的关于平均自由程的结论相吻合,可以用来定性确立平行平均自由程;该模型可以反映不同事件中平行平均自由程分布的不同特征;表现了平均自由程与径向太阳风速度有很好的负相关关系.结果可为未来缓变SEP平均自由程研究作参考.   相似文献   

16.
It is well known that the solar wind can significantly affect high-latitude ionospheric dynamics. However, the effects of the solar wind on the middle- and low-latitude ionosphere are much less studied. In this paper, we report observations that large perturbations in the middle- and low-latitude ionosphere are well correlated with solar wind variations. In one event, a significant (20–30%) decrease of the midlatitude ionospheric electron density over a large latitudinal range was related to a sudden drop in the solar wind pressure and a northward turning of the interplanetary magnetic field, and the density decrease became larger at lower latitudes. In another event, periodic perturbations in the dayside equatorial ionospheric E × B drift and electrojet were closely associated with variations in the interplanetary electric field. Since the solar wind is always changing with time, it can be a very important and common source of ionospheric perturbations at middle- and low-latitudes. The relationship between solar wind variations and significant ionospheric perturbations has important applications in space weather.  相似文献   

17.
Be-7 radioactive nuclei with a half-life of 53.3 days result from spallation reactions of galactic cosmic rays(GCR) and solar energetic particles (SEP) with N and O nuclei in the Earth's atmosphere. We calculate the average global production of Be-7 in the atmosphere by GCR and SEP The result indicates that an intense SEP event produces a large amount of Be-7 in the polar stratosphere and part of them could be transported to the surface at lower latitudes. The ground-level measurement of Be-7 in Japan exhibits the possibility of enhancement in the Be-7 radioactivity associated with the intense SEP event on July 14, 2000. In addition, the present experiment shows seasonal variations in the surface Be-7 concentration which peaks in spring and autumn. We discuss the possible air mass mixing between the stratosphere and troposphere to explain the measured seasonal variations. The surface concentration of Pb-210 nuclei indicates a similar trend to that of Be-7 and we suggest two possible explanations.  相似文献   

18.
In this work a study is performed on the correlation between fast forward interplanetary shock parameters at 1 Astronomical Unit and sudden impulse (SI) amplitudes in the H-component of the geomagnetic field, for periods of solar activity maximum (year 2000) and minimum (year 1995–1996). Solar wind temperature, density and speed, and total magnetic field, were taken to calculate the static pressures (thermal and magnetic) both in the upstream and downstream sides of the shocks. The variations of the solar wind parameters and pressures were then correlated with SI amplitudes. The solar wind speed variations presented good correlations with sudden impulses, with correlation coefficients larger than 0.70 both in solar maximum and solar minimum, whereas the solar wind density presented very low correlation. The parameter better correlated with SI was the square root dynamic pressure variation, showing a larger correlation during solar maximum (r = 0.82) than during solar minimum (r = 0.77). The correlations of SI with square root thermal and magnetic pressure were smaller than with the dynamic pressure, but they also present a good correlation, with r > 0.70 during both solar maximum and minimum. Multiple linear correlation analysis of SI in terms of the three pressure terms have shown that 78% and 85% of the variance in SI during solar maximum and minimum, respectively, are explained by the three pressure variations. Average sudden impulse amplitude was 25 nT during solar maximum and 21 nT during solar minimum, while average square root dynamic pressure variation is 1.20 and 0.86 nPa1/2 during solar maximum and minimum, respectively. Thus on average, fast forward interplanetary shocks are 33% stronger during solar maximum than during solar minimum, and the magnetospheric SI response has amplitude 20% higher during solar maximum than during solar minimum. A comparison with theoretical predictions (Tsyganenko’s model corrected by Earth’s induced currents) of the coefficient of sudden impulse change with solar wind dynamic pressure variation showed excellent agreement, with values around 17 nT/nPa1/2.  相似文献   

19.
We have studied conditions in interplanetary space, which can have an influence on galactic cosmic ray (CR) and climate change. In this connection the solar wind and interplanetary magnetic field parameters and cosmic ray variations have been compared with geomagnetic activity represented by the equatorial Dst index from the beginning 1965 to the end of 2012. Dst index is commonly used as the solar wind–magnetosphere–ionosphere interaction characteristic. The important drivers in interplanetary medium which have effect on cosmic rays as CMEs (coronal mass ejections) and CIRs (corotating interaction regions) undergo very strong changes during their propagation to the Earth. Because of this CMEs, coronal holes and the solar spot numbers (SSN) do not adequately reflect peculiarities concerned with the solar wind arrival to 1 AU. Therefore, the geomagnetic indices have some inestimable advantage as continuous series other the irregular solar wind measurements. We have compared the yearly average variations of Dst index and the solar wind parameters with cosmic ray data from Moscow, Climax, and Haleakala neutron monitors during the solar cycles 20–23. The descending phases of these solar cycles (CSs) had the long-lasting solar wind high speed streams occurred frequently and were the primary contributors to the recurrent Dst variations. They also had effects on cosmic rays variations. We show that long-term Dst variations in these solar cycles were correlated with the cosmic ray count rate and can be used for study of CR variations. Global temperature variations in connection with evolution of Dst index and CR variations is discussed.  相似文献   

20.
We examined polar rain flux observed by STSAT-1 in the northern polar cap and compared it with solar wind parameters. We found that the differential energy spectrum of polar rain was similar to that of the solar wind for the energy range 100 eV – 1 keV, although we cannot rule out the possibility of a small amount of acceleration. On the other hand, the low-energy component of the solar wind showed no correlation and, naturally, the solar wind density had only a weak correlation with the polar rain flux. Polar rain flux in the northern hemisphere is most significant for the condition of the interplanetary magnetic field components Bz < 0, Bx < 0, and By > 0, and in this case it correlated well with the magnitude of By and Bz. For other interplanetary magnetic field conditions, the correlation was insignificant. The results are consistent with those reported previously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号