首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 853 毫秒
1.
The Langton Ultimate Cosmic ray Intensity Detector (LUCID) is a payload onboard the satellite TechDemoSat-1, used to study the radiation environment in Low Earth Orbit (635?km). LUCID operated from 2014 to 2017, collecting over 2.1 million frames of radiation data from its five Timepix detectors on board. LUCID is one of the first uses of the Timepix detector technology in open space, with the data providing useful insight into the performance of this technology in new environments. It provides high-sensitivity imaging measurements of the mixed radiation field, with a wide dynamic range in terms of spectral response, particle type and direction. The data has been analysed using computing resources provided by GridPP, with a new machine learning algorithm that uses the Tensorflow framework. This algorithm provides a new approach to processing Medipix data, using a training set of human labelled tracks, providing greater particle classification accuracy than other algorithms. For managing the LUCID data, we have developed an online platform called Timepix Analysis Platform at School (TAPAS). This provides a swift and simple way for users to analyse data that they collect using Timepix detectors from both LUCID and other experiments. We also present some possible future uses of the LUCID data and Medipix detectors in space.  相似文献   

2.
In radiation protection, the Q-factor has been defined to describe the biological effectiveness of the energy deposition or absorbed dose to humans in the mixed radiation fields at aviation altitudes. This particular radiation field is generated by the interactions of primary cosmic particles with the atoms of the constituents of the Earth’s atmosphere. Thus the intensity, characterized by the ambient dose equivalent rate H∗(10), depends on the flight altitude and the energy spectra of the particles, mainly protons and alpha particles, impinging on the atmosphere. These charged cosmic projectiles are deflected both by the interplanetary and the Earth’s magnetic field such that the corresponding energy spectra are modulated by these fields. The solar minimum is a time period of particular interest since the interplanetary magnetic field is weakest within the 11-year solar cycle and the dose rates at aviation altitudes reach their maximum due to the reduced shielding of galactic cosmic radiation. For this reason, the German Aerospace Center (DLR) performed repeated dosimetric on-board measurements in cooperation with several German airlines during the past solar minimum from March 2006 to August 2008. The Q-factors measured with a TEPC range from 1.98 at the equator to 2.60 in the polar region.  相似文献   

3.
We present the analysis of data taken by the Space Application of Timepix Radiation Monitor (SATRAM). It is centred on a Timepix detector (300?μm thick silicon sensor, pixel pitch 55?μm, 256?×?256 pixels). It was flown on Proba-V, an Earth observing satellite of the European Space Agency (ESA) from an altitude of 820?km on a sun-synchronous orbit, launched on May 7, 2013. A Monte Carlo simulation was conducted to determine the detector response to electrons (0.5–7?MeV) and protons (10–400?MeV) in an omnidirectional field taking into account the shielding of the detector housing and the satellite. With the help of the simulation, a strategy was developed to separate electrons, protons and ions in the data. The measured dose rate and stopping power distribution are presented as well as SATRAM’s capability to measure some of the stronger events in Earth’s magnetosphere. The stopping power, the cluster height and the shape of the particle tracks in the sensor were used to separate electrons, protons and ions. The results are presented as well. Finally, the pitch angles for a short period of time were extracted from the data and corrected with the angular response determined by the simulation.  相似文献   

4.
We propose to study the radiation environment on board different flight vehicles: cosmos-type satellites, orbital stations, Space Shuttles and civil (sonic and supersonic) aircraft. These investigations will be carried out with single type of passive detector, namely, nuclear photoemulsions (NPE) with adjustable threshold of particle detection within broad range of linear energy transfer (LET) that is done by means of the technique of selective development of NPE exposed in space.

These investigations will allow one to determine:

• integral spectra of LET of charged particles of cosmic ray (CR) over a wide range from 2.0 to 5×104 MeV/cm in biological tissue;

• differential energy spectra of fast neutrons (1–20 MeV);

• estimation of absorbed and equivalent doses from charged and neutral component CR;

• charge and energy spectra of low energy nuclei (E≤100 MeV) with Z≥2 having in view the extreme hazard radiation to biological objects and microelectronic schemes taken on board inside and outside of these different flight vehicles with exposures from several days to several months.

The investigation of radiation environment on board the airplanes depending on the flight parameters will be conducted using emulsions of different sensitivity without any controlling of threshold sensitivity (Akopova et al., 1996). The proposed detector can be used in the joint experiments on the new International Cosmic Station “Alpha”.  相似文献   


5.
Solar particle events can give greatly enhanced radiation at aircraft altitudes, but are both difficult to predict and to calculate retrospectively. This enhanced radiation can give significant dose to aircrew and greatly increase the rate of single event effects in avionics. Validation of calculations is required but only very few events have been measured in flight. The CREAM detector on Concorde detected the event of 29 September 1989 and also four periods of enhancement during the events of 19-24 October 1989. Instantaneous rates were enhanced by up to a factor ten compared with quiet-time cosmic rays, while flight-averages were enhanced by up to a factor six. Calculations are described for increases in radiation at aircraft altitudes using solar particle spectra in conjunction with Monte Carlo radiation transport codes. In order to obtain solar particle spectra with sufficient accuracy over the required energy range it is necessary to combine space data with measurements from a wide range of geomagnetically dispersed, ground-level neutron monitors. Such spectra have been obtained for 29 September 1989 and 24 October 1989 and these are used to calculate enhancements that are compared with the data from CREAM on Concorde. The effect of cut-off rigidity suppression by geomagnetic activity is shown to be significant. For the largest event on record on 23 February 1956, there are no space data but there are data from a number of ground-level cosmic-ray detectors. Predictions for all events show very steep dependencies on both latitude and altitude. At high latitude and altitude (17 km) calculated increases with respect to cosmic rays are a factor 70 and 500 respectively for 29 September 1989 and 23 February 1956. The levels of radiation for high latitude, subsonic routes are calculated, using London to Los Angeles as an example, and can exceed 1 mSv, which is significantly higher than for Concorde routes from Europe to New York. The sensitivity of the calculations to spectral fitting, geomagnetic activity and other assumptions demonstrates the requirement for widespread carriage of radiation monitors on aircraft.  相似文献   

6.
利用国际地磁参考场模式(IGRF模式)分析了1970-2000年低高度南大西洋负磁异常区位形的漂移与变化,给出了几个高度异常区中心位置磁场强度的变化和位置的变化。利用带电粒子的运动学方程,简要分析了低高度辐射带高能粒子的运动,得出在低高度,磁场是决定辐射带高能粒子空间强度与分布的决定性因素.低高度辐射带空间分布位形的变化特征应该与低高度南大西洋负磁异常区的变化特征基本一致.低高度南大西洋负磁异常区的特征可以作为低高度辐射带空间分布位形的一个初步判据。  相似文献   

7.
We have developed a dynamic geomagnetic vertical cutoff rigidity model that predicts the energetic charged particle transmission through the magnetosphere. Initially developed for space applications, we demonstrate the applicability of this library of cutoff rigidity models for computing aircraft radiation dose. The world grids of vertical cutoff rigidities were obtained by particle trajectory tracing in a magnetospheric model. This reference set of world grids of vertical cutoff rigidities calculated for satellite altitudes covers all magnetic activity levels from super quiet to extremely disturbed (i.e., Kp indices ranging from 0 to 9+) for every three hours in universal time. We utilize the McIlwain "L" parameter as the basis of the interpolation technique to reduce these initial satellite altitude vertical cutoff rigidities to cutoff rigidity values at aircraft altitudes.  相似文献   

8.
The Standard Radiation Environment Monitor (SREM) is a simple particle detector developed for wide application on ESA satellites. It measures high-energy protons and electrons of the space environment with a 20° angular resolution and limited spectral information. Of the ten SREMs that have been manufactured, four have so far flown. The first model on STRV-1c functioned well until an early spacecraft failure. The other three are on-board, the ESA spacecraft INTEGRAL, ROSETTA and PROBA-1. Another model is flying on GIOVE-B, launched in April 2008 with three L-2 science missions to follow: both Herschel and Planck in 2008, and GAIA in 2011). The diverse orbits of these spacecraft and the common calibration of the monitors provides a unique dataset covering a wide range of B-L* space, providing a direct comparison of the radiation levels in the belts at different locations, and the effects of geomagnetic shielding. Data from the PROBA/SREM and INTEGRAL/IREM are compared with existing radiation belt models.  相似文献   

9.
The question of the origin of cosmic rays and other questions of astroparticle and particle physics can be addressed with indirect air-shower observations above 10 TeV primary energy. We propose to explore the cosmic ray and γ-ray sky (accelerator sky) in the energy range from 10 TeV to 1 EeV with the new ground-based large-area wide angle (ΔΩ ∼ 0.85 sterad) air-shower detector HiSCORE (Hundredi Square-km Cosmic ORigin Explorer). The HiSCORE detector is based on non-imaging air-shower Cherenkov light-front sampling using an array of light-collecting stations. A full detector simulation and basic reconstruction algorithms have been used to assess the performance of HiSCORE. First prototype studies for different hardware components of the detector array have been carried out. The resulting sensitivity of HiSCORE to γ-rays will be comparable to CTA at 50 TeV and will extend the sensitive energy range for γ-rays up to the PeV regime. HiSCORE will also be sensitive to charged cosmic rays between 100 TeV and 1 EeV.  相似文献   

10.
本文利用1994年和1996年两次返回式卫星的搭载条件对舱内辐射剂量进行了对比测量.通过对比测量,研究不同掺杂、不同厚度LiF剂量计测量空间辐射剂量的特点;研究GM计数管计数和LiF剂量间的转换系数以及转换系数随屏蔽状况的变化;由剂量和GM计数研究粒子平均碰撞阻止本领的估计方法.结果表明,不同掺杂、不同厚度的LiF剂量计测量结果间无显著差异,而转换系数几乎不受舱内位置和屏蔽状态的影响.不同厚度LiF剂量计,不同屏蔽状态的GM计数管计数和剂量—计数转换系数的比较研究以及对粒子平均碰撞阻止本领的估计表明,舱内辐射剂量起决定作用的是高能粒子成分,其平均碰撞阻止本领估计约为5MeV/cm.  相似文献   

11.
We have flown two new charged particle detectors in five recent Shuttle flights. In this paper we report on the dose rate, equivalent dose rate, and radiation quality factor for trapped protons and cosmic radiation separately. A comparison of the integral linear energy transfer (LET) spectra with recent transport code calculations show significant disagreement. Using the calculated dose rate from the omni-directional AP8MAX model with IGRF reference magnetic field epoch 1970, and observed dose rate as a function of (averaged over all geographic latitude) and longitude, we have determined the westward drift of the South Atlantic anomaly. We have also studied the east-west effect, and observed a 'second' radiation belt. A comparison of the galactic cosmic radiation lineal energy transfer spectra with model calculations shows disagreement comparable to those of the trapped protons.  相似文献   

12.
On 14 October 1999, the Chinese-Brazil earth resource satellite (CBERS-1) was launched in China. On board of the satellite there was an instrument designed at Peking University to detect the energetic particle radiation inside the satellite so the radiation fluxes of energetic particles in the cabin can be monitored continuously. Inside a satellite cabin, radiation environment consists of ether penetrated energetic particles or secondary radiation from satellite materials due to the interactions with primary cosmic rays.Purpose of the detectors are twofold, to monitor the particle radiation in the cabin and also to study the space radiation environment The data can be used to study the radiation environment and their effects on the electronics inside the satelhte cabin. On the other hand, the data are useful in study of geo-space energetic particle events such as solar proton events, particle precipitation and variations of the radiation belt since there should be some correlation between the radiation situation inside and outside the satellite.The instrument consists of two semi-conductor detectors for protons and electrons respectively. Each detector has two channels of energy ranges. They are 0.5-2MeV and ≥2MeV for electrons and 5-30MeV and 30-60MeV for protons. Counting rate for all channels are up to 104/(cm2@s)and power consumption is about 2.5 W. There are also the additional functions of CMOS TID (total integrated dose) effect and direct SEU monitoring. The data of CBMC was first sent back on Oct. 17 1999 and it's almost three years from then on. The detector has been working normally and the quality of data is good.The preliminary results of data analysis of CBMC not only reveal the effects of polar particle precipitation and radiation belt on radiation environment inside a satellite, but also show some important features of the geo-space energetic particle radiation.As one of the most important parameters of space weather, the energetic charged particles have great influences on space activities and ground tech nology. CBMC is perhaps the first long-term on-board special equipment to monitor the energetic particle radiation environment inside the satellite and the data it accnmulated are very useful in both satellite designing and space research.  相似文献   

13.
Inactivation and double strand break (dsb) induction after heavy ion irradiation were studied in stationary phase cells of the highly radiation resistant bacterium Deinococcus radiodurans R1. There is evidence that the radiation sensitivity of this bacterium is nearly independent on energy in the range of up to 15 MeV/u for lighter ions (Ar). The responses to dsb induction for charged particles show direct relationship between increasing radiation dose and residual intact DNA.  相似文献   

14.
Charged particle fluxes on the trajectory of future Russian space research mission to Jupiter and its satellite Europa are investigated. The existing experimental data and models of Jupiter’s main magnetic field and radiation belts are summarized. Preliminary results of computations of energetic particle fluxes and radiation doses for each stage of the flight are given. Special attention is paid to estimation of radiation conditions in Europa’s orbit and on its surface; influence of the satellite on spatial distribution of the fluxes of charged particles of various energies is studied.  相似文献   

15.
Comprehensive study of the dose, flux and deposited energy spectra shape data obtained by Liulin type spectrometers on spacecraft (five different experiments) and aircraft since 2001 is performed with the aim of understanding how well these parameters can characterize the type of predominant particles and their energy in the near Earth radiation environment. Three different methods for characterisation of the incoming radiation from Liulin spectrometers are described. The results revealed that the most informative one is by the shape of the deposited energy spectra. Spectra generated by Galactic Cosmic Rays (GCR) protons and their secondaries are with linear falling shape in the coordinates deposited energy/deposited per channel dose rate. The position of the maximum of the deposited energy spectra inside the South Atlantic Anomaly (SAA) region depends on the incident energy of the incoming protons. Spectra generated by relativistic electrons in the outer radiation belt have a maximum in the first channels. For higher energy depositions these spectra are similar to the GCR spectra. Mixed radiation by protons and electrons and/or bremsstrahlung is characterized by spectra with 2 maxima. All type of spectra has a knee close to 6.2 MeV deposited energy, which correspond to the stopping energy of protons in the detector. Dose to flux ratio known also as specific dose is another high information parameter, which is given by experimentally obtained formulae [Heffner, J. Nuclear radiation and safety in space. M. Atomizdat. 115, 1971 (in Russian)] connecting the dose to flux ratio and the incident energy of the particles.  相似文献   

16.
17.
The 2001 Mars Odyssey spacecraft was launched towards Mars on April 7, 2001. Onboard the spacecraft is the Martian radiation environment experiment (MARIE), which is designed to measure the background radiation environment due to galactic cosmic rays (GCR) and solar protons in the 20–500 MeV/n energy range. We present an approach for developing a space radiation-shielding model of the spacecraft that includes the MARIE instrument in the current mapping phase orientation. A discussion is presented describing the development and methodology used to construct the shielding model. For a given GCR model environment, using the current MARIE shielding model and the high-energy particle transport codes, dose rate values are compared with MARIE measurements during the early mapping phase in Mars orbit. The results show good agreement between the model calculations and the MARIE measurements as presented for the March 2002 dataset.  相似文献   

18.
The risks to aircrew health posed by prolonged exposure to low levels of ionizing radiation at aircraft altitudes have recently received renewed attention. Civil and military aircraft currently on the drawing board are expected to operate at higher altitudes (>12 km) and fly longer ranges than do existing aircraft, thereby exposing their crews to higher levels of ionizing radiation, for longer periods of time. We are currently carrying out dosimetric measurements of the ionizing radiation environment at approximately 20 km altitude using portable Si detectors aboard NASA's two ER-2 high altitude research aircraft. The instruments, Liulin-4J, have been extensively calibrated at several particle accelerators. With these instruments, we can measure not only absorbed dose, but also variation of the absorbed dose as a function of time. We report radiation dose measurements as function of time, altitude, and latitude for several ER-2 missions.  相似文献   

19.
Instruments and methods recently used for space radiation dosimetry are reviewed for the purposes of comparison and reference. Passive detection methods mentioned include track-etch, luminescent, nuclear emulsion, and metal foil detectors. These can provide a reliable source of data for all types of radiation, but often require processing that cannot occur in space. Experimental methods of LET determination using TLDs, such as the high temperature peak ratio (HTR) method, are also discussed. Portable readout passive detectors including Pille, MOSFET, and bubble detector systems provide a novel alternative to traditional passive detectors, but research is more limited and their widespread use has yet to be established. Active detectors including DOSTEL, CPDS, RRMD-III, TEPC, R-16, BBND, and the Liulin series are examined for technical details. These instruments allow the determination of dose in real-time, and some can determine LET of incident particles by measuring energy deposition over a known path-length, but size and power consumption limit their practical use for dosimetry. Improved neutron dosimetry and development of a small active or portable readout personnel dosimeter capable of accurate LET determination are important steps for managing the effects of long-term exposure to the space radiation environment.  相似文献   

20.
The LIULIN-3M instrument is a further development of the LIULIN dosimeter-radiometer, used on the MIR spacestation during the 1988-1994 time period. The LIULIN-3M is designed for continuous monitoring of the radiation environment during the BION-12 satellite flight in 1999. A semiconductor detector with 1 mm thickness and cm2 area is contained in the instrument. Pulse high analysis technique is used to determine the energy losses in the detector. The final data from the instrument are the flux and the dose rate for the exposure time and 256 channels of absorbed dose spectra based on the assumption that the particle flux is normal to the detector. The LIULIN-3M instrument was calibrated by proton fluxes with different energies at the Indiana University Cyclotron Facility in June 1997 and had been used for radiation measurements during commercial aircraft flights. The calibration procedure and some flight results are presented in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号