首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Studying the relationship of total electron content (TEC) to solar or geomagnetic activities at different solar activity stages can provide a reference for ionospheric modeling and prediction. On the basis of solar activity indices, geomagnetic activity parameters, and ionospheric TEC data at different solar activity stages, this study analyzes the overall variation relationships of solar and geomagnetic activities with ionospheric TEC, the characteristics of the quasi-27-day periodic oscillations of the three variables at different stages, and the delayed TEC response of solar activity by conducting correlation analysis, Butterworth band-pass filtering, Fourier transform, and time lag analysis. The following results are obtained. (1) TEC exhibits a significant linear relationship with solar activity at different solar activity stages. The correlation coefficients |R| are arranged as follows: |R|EUV > |R|F10.7 > |R|sunspot number. No significant linear relationship exists between TEC and geomagnetic activity parameters (|R| < 0.35). (2) TEC, solar activity indices, and geomagnetic activity parameters have a period of 10.5 years. The maximum amplitudes of the Fourier spectrum for TEC and solar activity indices are nearly 27 days and those of geomagnetic activity parameters are nearly 27 and 13.5 days. (3) The deviations of the quasi-27-day significant periodic oscillation of TEC and solar activity indices are consistent. (4) No evident relationship exists between the quasi-27-day periodic oscillation of TEC and geomagnetic activity parameters. (5) The delay time of TEC for the 10.7 cm solar radio flux and extreme ultraviolet is always consistent, whereas that for sunspot number varies at each stage.  相似文献   

2.
Analysis of the seasonal, hemispheric and latitudinal variation of the ionospheric F2 peak during periods of disturbed geomagnetic conditions in 2011, a year of low solar activity, had been studied using hourly data obtained from low- and mid-latitude ionosonde stations. Our results showed an enhancement in F2-layer maximum electron density (NmF2) at daytime over low latitudes. For the mid-latitude stations, NmF2 depletion pre-dominates the daytime and overturned at nighttime. In general, the variation in terms of magnitude is higher in the low-latitude than at mid-latitude. The nighttime decrease in NmF2 is accompanied by a corresponding F2 peak height (hmF2) increase and overturned at daytime. The hmF2 response during the equinoctial months is lower than the solstices. NmF2 shows distinct seasonal, hemispheric and latitudinal dependence in its response. Appearance of a significant ionospheric effect in southern hemisphere is higher than in the northern hemisphere, and is more pronounced in the equinoxes at low latitudes. At mid-latitudes, the ionospheric effect is insignificant at both hemispheres. A negative ionospheric response dominates the whole seasons at the mid-latitude except for March equinox. The reverse is the case for the hmF2 observation. The amplitudes of both the NmF2 and hmF2 increase with increasing latitude and maximize in the southern hemisphere in terms of longitude.  相似文献   

3.
地磁扰动期间日本Kokubunji站电离层的扰动特征分析   总被引:4,自引:4,他引:0  
利用日本Kokubunji站(139.5°E,35.5°N)1959年1月到2004年12月共46年的F2层临界频率foF2参数,统计分析了Kokubunji站电离层F2层峰值电子浓度NmF2随地磁活动、太阳活动、季节和地方时变化的形态特征.结果表明,总体来看,磁暴期间Kokubunji站电离层响应以正暴为主,其中在太阳高年夏季为负暴,冬季为正暴,春秋季以负暴为主但幅度较小;在太阳低年夏季以正暴为主,冬季为正暴,春秋季以正暴为主.NmF2扰动与ap指数在夏季太阳高年负相关,在冬季无论太阳高年低年均为正相关,春秋季中4月和9月在太阳高年类似夏季,3月和10月在太阳低年类似冬季.电离层最大负相扰动对最大地磁活动的延迟时间约为12~15 h;正相扰动的延迟时间则分别为3 h和10 h.地磁活跃期间地方时黄昏后到午夜前倾向于正相扰动,清晨倾向于负相扰动.   相似文献   

4.
In this paper we compared the ionospheric peak parameters (peak electron density of the F region, NmF2, and peak height of the F region, hmF2) retrieved from the FORMASAT-3/COSMIC (COSMIC for short) satellite measurement with those from ionosonde observation at Sanya (18.3°N, 109.6°E) during the period of 2008–2013. Although COSMIC NmF2 (hmF2) tends to be lower (higher) than ionosonde NmF2 (hmF2), the results show that the ionospheric peak parameters retrieved from COSMIC measurement generally agree well with ionosonde observation. For NmF2 the correlation between the COSMIC measurement and the ionosonde observation is higher than 0.89, and for hmF2 the correlation is higher than 0.80. The correlation of the ionospheric peak parameters decreases when solar activity increases. The performance of COSMIC measurement is acceptable under geomagnetic disturbed condition. The correlation of NmF2 between COSMIC and ionosonde measurements is higher (lower) during the nighttime (daytime), while the correlation of hmF2 is lower (higher) during the nighttime (daytime).  相似文献   

5.
The geomagnetic storm is a complex process of solar wind/magnetospheric origin. The variability of the ionospheric parameters increases substantially during geomagnetic storms initiated by solar disturbances. Various features of geomagnetic storm act at various altitudes in the ionosphere and neutral atmosphere. The paper deals with variability of the electron density of the ionospheric bottomside F region at every 10 km of altitude during intense geomagnetic storms with attention paid mainly to the distribution of the F1 region daytime ionisation. We have analysed all available electron density profiles from some European middle latitude stations (Chilton, Pruhonice, Ebro, Arenosillo, Athens) for 36 events that occurred in different seasons and under different levels of solar activity (1995–2003). Selected events consist of both depletion and increase of the F2 region electron density. For European higher middle and middle latitude the F1 region response to geomagnetic storm was found to be negative (decrease of electron density) independent on the storm effect on the F2 region. For lower middle latitude the F1 response is weaker and less regular. Results of the analysis also show that the maximum of the storm effect may sometimes occur below the height of the maximum of electron density (NmF2).  相似文献   

6.
Variations in the high-latitude ionosphere structure during March 22, 1979 geomagnetic storm are examined. Electron density Ne and temperature Te from the Cosmos-900 satellite, NmF2, Ne and He+ from the ISS-b satellite, precipitation of soft electrons from the Intercosmos-19 satellite, and the global picture of the auroral electron precipitation from the DMSP, TIROS and P78 satellites are used. These multi-satellite databases allow us to investigate the storm-time variations in the locations of the following ionospheric structures: the day-time cusp, the equatorial boundary of the diffuse auroral precipitation (DPB), the main ionospheric trough (MIT), the day-time trough, the ring ionospheric trough (RIT) and the light ions trough (LIT). The variations in NmF2, Ne, He+ and Te in the high-latitude ionosphere for the different local time sectors are analyzed also. The features of the high-latitude ionospheric response to a strong magnetic storm are described.  相似文献   

7.
Analysis of a long-time series of hourly median characteristics of the ionospheric plasma at two mid-latitude locations in the Northern and Southern hemisphere, Juliusruh (54.6N; 13.4E) and Hobart (42.9S; 147.3E), reveals patterns of their synchronous and independent variability. We studied timelines of GPS vTEC, ionogram-derived F2-layer peak electron density NmF2, ionospheric equivalent slab thickness τ, and their ratios at two locations during the complete 23rd solar cycle and its following period of the extremely low solar activity in 2008–2009. This study has also involved the comparative analysis of the observed data versus the model predictions by IRI-2012. During the high solar activity in 2000–2002, seasonal variations show a complicated cross-hemisphere behavior influenced by the winter and semi-annual anomalies, with the largest noon-time values of TEC and NmF2 observed around equinoxes. Strength of the winter anomaly in NmF2 was significantly greater at Juliusruh in comparison with Hobart. The winter anomaly in GPS vTEC values was much weaker than in NmF2 for the Northern hemisphere mid-latitudes and was entirely absent at the Southern hemisphere. Cross-hemisphere analysis of the equivalent slab thickness shows its clear seasonal dependence for all levels of solar activity: the day-time maximum τmax is observed during local summer, whereas the day-time minimum τmin is observed during local winter. The night-time values of τ were higher compared to the day-time values during the winter and equinox seasons. Comparative model-data study shows rather good IRI performance of the day-time NmF2 for mid-latitudes of both hemispheres and rather noticeable overestimations for the mid-night NmF2 values during high solar activity. Analysis of IRI vTEC demonstrates the model limitations, related with the absence of the plasmaspheric part, and actual demand in a reliable and standard ionosphere–plasmasphere model for analysis of GPS vTEC.  相似文献   

8.
全球电离层对2000年4月6-7日磁暴事件的响应   总被引:1,自引:0,他引:1  
利用分布于全球的电离层台站的测高仪观测数据,对扰动期间,foF2值与其宁静期间参考值进行比较,研究了2000年4月6—7日磁暴期间全球不同区域电离层的响应形态,并通过对比磁扰期间NmF2的变化与由MSISR90经验模式估算的中性大气浓度比(no/nN2)的变化,探讨了本次事件期间的电离层暴扰动机制.结果表明,在磁暴主相和恢复相早期,出现了全球性的电离层F2层负相暴效应.最大负相暴效应出现在磁暴恢复相早期,即电离层暴恢复相开始时间滞后于磁暴恢复相开始时间.在磁暴恢复相后期,一些台站出现正相扰动.研究结果表明,本次事件期间的电离层暴主要是由磁暴活动而诱发的热层暴环流引起的.  相似文献   

9.
The relative importance of the main drivers of positive ionospheric storms at low-mid latitudes is studied using observations and modeling for the first time. In response to a rare super double geomagnetic storm during 07–11 November 2004, the low-mid latitude (17°–48°N geomag. lat.) ionosphere produced positive ionospheric storms in peak electron density (NmF2) in Japan longitudes (≈125°–145°E) on the day of main phase (MP1) onset (06:30 LT) and negative ionospheric storms in American longitudes (≈65°–120°W) on the following day of MP1 onset (13:00–16:00 LT). The relative effects of the main drivers of the positive ionospheric storms (penetrating daytime eastward electric field, and direct and indirect effects of equatorward neutral wind) are studied using the Sheffield University Plasmasphere Ionosphere Model (SUPIM). The model results show that the penetrating daytime (morning–noon) eastward electric field shifts the equatorial ionisation anomaly crests in NmF2 and TEC (total electron content) to higher than normal latitudes and reduces their values at latitudes at and within the anomaly crests while the direct effects of the equatorward wind (that reduce poleward plasma flow and raise the ionosphere to high altitudes of reduced chemical loss) combined with daytime production of ionisation increase NmF2 and TEC at latitudes poleward of the equatorial region; the later effects can be major causes of positive ionospheric storms at mid latitudes. The downwelling (indirect) effect of the wind increases NmF2 and TEC at low latitudes while its upwelling (indirect) effect reduces NmF2 and TEC at mid latitudes. The net effect of all main drivers is positive ionospheric storms at low-mid latitudes in Japan longitude, which qualitatively agrees with the observations.  相似文献   

10.
The main objective of the present investigation has been to compare the ionospheric parameters (NmF2 and hmF2) observed by two ground-based ionospheric sounders (one at PALMAS- located near the magnetic equator and the other at Sao Jose dos Campos-located in the low-latitude region) in the Brazilian sector with that by the satellite FORMOSAT-3/COSMIC radio occultation (RO) measurements during two geomagnetic storms which occurred in December 2006 and July 2009. It should be pointed out that in spite of increasing the latitude (to 10°) and longitude (to 20°) around the stations; we had very few common observations. It has been observed that both the peak electron density (NmF2) and peak height (hmF2) observed by two different techniques (space-borne COSMIC and ground-based ionosondes) during both the geomagnetic storm events compares fairly well (with high correlation coefficients) at the two stations in the Brazilian sector. It should be pointed out that due to equatorial spread F (ESF) in the first storm (December 2006) and no-reflections from the ionosphere during nighttime in the second storm (July 2009), we had virtually daytime data from the two ionosondes.  相似文献   

11.
磁暴期间中纬度电离层剖面结构变化的数值模拟   总被引:4,自引:1,他引:4  
利用电离层理论模型模拟了磁暴期间热层大气温度、成分、中性风和电场扰动对电离层电子密度剖面结构,特别是峰值密度和峰值高度变化的影响,结果表明,热层大气温度变化所引起光化反应系数的改变对电离层剖面结构影响不大;热层大气成分特别是N2/O的变化能有效地引起密度剖面变化,N2增加足以使峰值密度产生所观测到的负相暴;由中性风和电场引起等离子体漂移是峰值高度hmF2变化的主要原因,但对电子密度的影响不足以抵消  相似文献   

12.
Responses of low-latitude ionospheric critical frequency of F2 layer to geomagnetic activities in different seasons and under different levels of solar activity are investigated by analyzing the ionospheric foF2 data from DPS-4 Digisonde in Hainan Observatory during 2002–2005. The results are as follows: (1) the response of foF2 to geomagnetic activity in Hainan shows obvious diurnal variation except for the summer in low solar activity period. Generally, geomagnetic activity will cause foF2 to increase at daytime and decrease at nighttime. The intensity of response of foF2 is stronger at nighttime than that at daytime; (2) seasonal dependence of the response of foF2 to geomagnetic activity is very obvious. The negative ionospheric storm effect is the strongest in summer and the positive ionospheric storm effect is the strongest in winter; (3) the solar cycle has important effect on the response of foF2 to geomagnetic activity in Hainan. In high solar activity period, the diurnal variation of the response of foF2 is very pronounced in each season, and the strong ionospheric response can last several days. In low solar activity period, ionospheric response has very pronounced diurnal variation in winter only; (4) the local time of geomagnetic activities occurring also has important effect on the responses of foF2 in Hainan. Generally, geomagnetic activities occurred at nighttime can cause stronger and longer responses of foF2 in Hainan.  相似文献   

13.
利用第24太阳活动周中国多个地区GNSS电离层闪烁监测站数据,统计分析中国中低纬地区电离层闪烁特性.结果显示:电离层闪烁主要发生在春秋分及夜间20:00—02:00LT时段;在28°N以南地区,纬度越低电离层闪烁强度和发生概率越高;电离层闪烁发生概率与太阳活动呈正相关,太阳活动上升年电离层闪烁发生概率高于下降年;不同强度地磁活动条件下,电离层闪烁均可能发生,且与地磁活动强度整体呈负相关.通过研究电离层闪烁统计特性,可以为电离层闪烁机理的深入研究、预报及工程应用提供参考.   相似文献   

14.
We have studied the time delay of ionospheric storms to geomagnetic storms at a low latitude station Taoyuan (25.02°N, 121.21°E), Taiwan using the Dst and TEC data during 126 geomagnetic storms from the year 2002 to 2014. In addition to the known local time dependence of the time delay, the statistics show that the time delay has significant seasonal characteristics, which can be explained within the framework of the seasonal characteristics of the ionospheric TEC. The data also show that there is no correlation between the time delay and the intensity of magnetic storms. As for the solar activity dependence of the time delay, the results show that there is no relationship between the time delay of positive storms and the solar activity, whereas the time delay of negative storms has weakly negative dependence on the solar activity, with correlation coefficient −0.41. Especially, there are two kinds of extreme events: pre-storm response events and long-time delay events. All of the pre-storm response events occurred during 15–20 LT, manifesting the Equator Ionospheric Anomaly (EIA) feature at Taoyuan. Moreover, the common features of the pre-storm response events suggest the storm sudden commencement (SSC) and weak geomagnetic disturbance before the main phase onset (MPO) of magnetic storms are two main possible causes of the pre-storm response events. By analyzing the geomagnetic indices during the events with long-time delay, we infer that this kind of events may not be caused by magnetic storms, and they might belong to ionospheric Q-disturbances.  相似文献   

15.
We report the results of ionospheric measurements from DPS-4 installed at Multan (Geog coord. 30.18°N, 71.48°E, dip 47.4°). The variations in F2-layer maximum electron density NmF2 and its peak height hmF2 are studied during the deep solar minimum between cycles 23 & 24 i.e 2008–2009 with comparisons conducted with the International Reference Ionosphere (IRI) versions 2012 & 2016. We find that the hmF2 observations peak around the pre-sunrise and sunrise hours depending on the month. Seasonally, the daytime variation of NmF2 is higher in the Equinox and Summer, while daytime hmF2 are slightly higher in the Equinox and Winter. High values of hmF2 around midnight are caused by an increase of upward drifts produced by meridional winds. The ionosphere over Multan, which lies at the verge of low and mid latitude, is affected by both E×B drifts and thermospheric winds as evident from mid-night peaks and near-sunrise dips in hmF2. The results of the comparison of the observed NmF2 and hmF2 for the year 2008–2009 with the IRI-2012 (both NmF2 and hmF2) and IRI-2016 (only hmF2) estimates indicate that for NmF2, IRI-2012 with Consultative Committee International Radio (CCIR) option produces values in better agreement with observed data. Whereas, for hmF2, IRI-2016 with both International Union of Radio Science (URSI) and CCIR SHU-2015 options, predicts well for nighttime hours throughout the year. However, the IRI-2012 with CCIR option produces better agreement with data during daytime hours. Furthermore, IRI-2012 with CCIR option gives better results during Equinox months, whereas, IRI-2016 with both URSI and CCIR SHU-2015 options predict well for Winter and Summer.  相似文献   

16.
IPM has detected nightside 135.6 nm emission enhancements over a wide latitude range, from the sub-auroral latitudes to the equatorial regions during geomagnetic storms. Our work, presented in this paper, uses the data of IPM to understand these 135.6 nm emission enhancements during of geomagnetic storms and studies the variations of total electron content (TEC) and the F2 layer peak electron density (NmF2) in the region of enhanced emissions. Middle and low latitude emission enhancements are presented during several medium storms in 2018. The variations of both the integrated electron content (IEC) derived from the nighttime OI 135.6 nm emission by IPM and TEC from the International GNSS Service (IGS) relative to the daily mean of magnetically quiet days of per each latitude bin (30°≦geographic latitude < 40°, 15°≦geographic latitude < 30°, 0°≦geographic latitude < 15°, ?15°≦geographic latitude < 0°, ?30°≦geographic latitude < -15°, ?40°≦geographic latitude < -30°) are investigated and show that on magnetically storm day, IEC by IPM always increases, while TEC from IGC may increase or decrease. Even if both increase, the increase of IEC is greater than that of TEC. From the comparison of IEC and TEC during magnetic storms, it can be seen that the enhancement of the nighttime 135.6 nm emissions is not entirely due to the ionospheric change. The time of IEC enhancements at each latitude bin is in good agreement, which mainly corresponds to the main phase time of the geomagnetic storm event and lasts until the recovery phase. The available ground-based ionosonde stations provide the values of NmF2 which match the 135.6 nm emissions measured by IPM in space and time. The variations of NmF2 squared can characterize the variations of the OI 135.6 nm emissions caused by O+ ions and electrons radiative recombination. The study results show that the OI 135.6 nm emission enhancements caused by O+ ions and electrons radiative recombination (where NmF2 squared increases) are obviously a contribution to the measured 135.6 nm emission enhancements by IPM. The contribution accounts for at least one of all contributions to the measured 135.6 nm emission enhancements by IPM. However, where the NmF2 squared provided by ionosonde decrease or change little (where the OI 135.6 nm emissions cause by O+ ions and electrons radiative recombination also decrease or change little), the emission enhancements measured by IPM at storm-time appear to come from the contributions of other mechanisms, such as energetic neutral atoms precipitation, or the mutual neutralization emission (O+ + O-→2O + h? (135.6 nm)) which also occupies a certain proportion in 135.6 nm airglow emission at night.  相似文献   

17.
利用中国中低纬台站漠河(53.5°N,122.3°E)、北京(40.3°N,116.2°E)、武汉(30.5°N,114.2°E)和三亚(18.3°N,109.6°E)的电离层观测数据,对比分析了4个台站电离层参数在2015年不同季节4个地磁扰动事件期间的变化特征.结果表明,4个磁暴事件期间电离层的响应特征并不完全一致,有着明显的季节特征,春季、夏季和秋季电离层以负相扰动为主,冬季以正相扰动为主.分析发现,中性成分O/N2的降低与电离层负相扰动有关,但三亚地区的负相扰动还与扰动发电机电场相关.正相扰动的机制在不同事件中并不相同,穿透电场可能是引起春季磁暴事件期间电离层短时正暴效应的原因,而冬季长时间的正暴效应则是扰动电场和中性风共同作用的结果.   相似文献   

18.
基于NTCM-BC模型的全球卫星导航系统单频电离层延迟修正   总被引:1,自引:0,他引:1  
选择NTCM-BC模型作为单频电离层延迟修正模型,通过非线性最小二乘拟合的方法,利用提前一天预测的电离层图(COPG文件),计算得到NTCM-BC模型修正系数;利用Klobuchar模型和IGS发布的GIM数据对NTCM-BC模型进行比较和分析.对太阳活动高、中、低年实测数据的分析结果表明:全球平均水平上,NTCM-BC模型的电离层延迟修正性能明显优于Klobuchar模型,NTCM-BC模型的TEC平均误差和均方根误差比Klobuchar模型分别下降了41%和30%;模型的TEC计算误差与太阳活动剧烈程度成正相关,即太阳活动高年模型误差较大,太阳活动低年误差相对较低.相较于磁静日,磁扰日期间Klobuchar模型和NCTM模型的误差均有一定程度的增加.此外,模型的电离层修正误差同时存在明显的纬度、季节和地方时差异.   相似文献   

19.
Using the TEC data at Beijing (39.61°N, 115.89°E)/Yakutsk (62.03°N, 129.68°E) stations of East Asia regions and relevant geomagnetic data from 2010 to 2017, we have studied the time delay of ionospheric storms to geomagnetic storms and compare it with our previous results of Taoyuan (25.02°N, 121.21°E) station (Zhang et al., 2020). The data shows a well-known local time dependence of the time delay, and seasonal dependences are different at these stations. In addition, there is no correlation between the time delay and the magnetic storm intensity /solar activity, except the time delay of negative storms has weakly negative dependence on the solar activity. Comparing with the results of Taoyuan station which is located at EIA region in East Asia, we find that the time delay increases nonlinearly as the latitude decreases due to different ionospheric backgrounds at these places. Moreover, the pre-storm disturbance events are found to have similar statistical characteristics as the pre-storm enhancement in Europe middle latitudes (Bure?ová and La?tovi?ka, 2007). By subtracting the common features of the pre-storm disturbance events, we preliminarily infer that auroral activity might be main driver of the pre-storm disturbance events.  相似文献   

20.
In our study we analyze and compare the response and behavior of the ionospheric F2 and of the sporadic E-layer during three strong (i.e., Dst?<??100nT) individual geomagnetic storms from years 2012, 2013 and 2015, winter time period. The data was provided by the state-of the art digital ionosonde of the Széchenyi István Geophysical Observatory located at midlatitude, Nagycenk, Hungary (IAGA code: NCK, geomagnetic latitude: 46.17° geomagnetic longitude: 98.85°). The local time of the sudden commencement (SC) was used to characterize the type of the ionospheric storm (after Mendillo and Narvaez, 2010). This way two regular positive phase (RPP) ionospheric storms and one no-positive phase (NPP) storm have been analyzed. In all three cases a significant increase in electron density of the foF2 layer can be observed at dawn/early morning (around 6:00 UT, 07:00 LT). Also we can observe the fade-out of the ionospheric layers at night during the geomagnetically disturbed time periods. Our results suggest that the fade-out effect is not connected to the occurrence of the sporadic E-layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号