首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study reports on ionospheric disturbances that occurred in the early morning hours in the South American–Atlantic sector during a few intense/super storm events. The events were observed at latitudes close to the southern crest of the equatorial ionization anomaly (EIA) as an unusual intensification of the F region electron density peak at local times when the EIA is not usually developed. All the events were observed at pre dawn-morning hours, under conditions of northward interplanetary geomagnetic field. Large scale traveling ionospheric disturbances that are launched during highly disturbed conditions and/or equatorward surges in the thermospheric meridional winds seem to be the most probable causes of the observed disturbances.  相似文献   

2.
In this paper, the peculiarities of ionospheric response to geomagnetic disturbances observed at the decay and minimum of solar activity (SA) in the period 2004–2007 are investigated with respect to different geomagnetic conditions. Data from ionospheric stations and results of total electron content (TEC) measurements made at the network of GPS ground-based receivers located within the latitude–longitude sector (20–70°N, 90–160°Е) are used in this study. Three groups of anomalous ionospheric response to geomagnetic disturbances have been observed during low solar activity. At daytime, the large-scale traveling ionospheric disturbances (LSTIDs) could generally be related to the main phase of magnetic storm. Quasi-two-days wavelike disturbances (WLDs) have been also observed in the main phase independent of the geomagnetic storm intensity. Sharp electron density oscillations of short duration (OSD) occurred in the response to the onset of both main and recovery phases of the magnetic storm in the daytime at middle latitudes. A numerical model for ionosphere–plasmasphere coupling was used to interpret the occurrence of LS TIDs. Results showed that the LSTIDs might be associated with the unexpected lifting of F2 layer to the region with the lower recombination rate by reinforced meridional winds that produces the increase of the electron density in the F2 layer maximum.  相似文献   

3.
The results of modeling of ionospheric disturbances observed in the East Asian region during moderate storms are presented. The numerical model for ionosphere–plasmasphere coupling developed at the ISTP SB RAS is used to interpret the data of observations at ionospheric stations located in the longitudinal sector of 90–130°E at latitudes from auroral zone to equator. There is obtained a reasonable agreement between measurements and modeling results for winter and equinox. In the summer ionosphere, at the background of high ionization by the solar EUV radiation in the quiet geomagnetic period the meridional thermospheric wind strongly impacts the electron concentration in the middle and auroral ionosphere. The consistent calculations of the thermospheric wind permit to obtain the model results which are closer to summer observations. The actual information about the space-time variations of thermosphere and magnetosphere parameters should be taken into account during storms.  相似文献   

4.
Variations of the ionospheric weather W-index for two midlatitude observatories, namely, Grahamstown and Hermanus, and their conjugate counterpart locations in Africa are studied for a period from October 2010 to December 2011. The observatories are located in the longitude sector, which has consistent magnetic equator and geographic equator so that geomagnetic latitudes of the line of force are very close to the corresponding geographic latitudes providing opportunity to ignore the impact of the difference of the gravitational field and the geomagnetic field at the conjugate points on the ionosphere structure and dynamics. The ionosondes of Grahamstown and Hermanus provide data of the critical frequency (foF2), and Global Ionospheric Maps (GIM) provide the total electron content (TECgps) along the magnetic field line up to the conjugate point in the opposite hemisphere. The global model of the ionosphere, International Reference Ionosphere, extended to the plasmasphere altitude of 20,200 km (IRI-Plas) is used to deliver the F2 layer peak parameters from TECgps at the magnetic conjugate area. The evidence is obtained that the electron gas heated by day and cooled by night at the summer hemisphere as compared with the opposite features in the conjugate winter hemisphere testifies on a reversal of plasma fluxes along the magnetic field line by the solar terminator. The ionospheric weather W-index is derived from NmF2 (related with foF2) and TECgps data. It is found that symmetry of W-index behavior in the magnetic conjugate hemispheres is dominant for the equinoxes when plasma movement along the magnetic line of force is imposed on symmetrical background electron density and electron content. Asymmetry of the ionospheric storm effects is observed for solstices when the plasma diffuse down more slowly into the colder winter hemisphere than into the warmer summer hemisphere inducing either plasma increase (positive phase) or decrease (negative phase of W-index) in the ionospheric and plasmaspheric plasma density.  相似文献   

5.
The relative importance of the main drivers of positive ionospheric storms at low-mid latitudes is studied using observations and modeling for the first time. In response to a rare super double geomagnetic storm during 07–11 November 2004, the low-mid latitude (17°–48°N geomag. lat.) ionosphere produced positive ionospheric storms in peak electron density (NmF2) in Japan longitudes (≈125°–145°E) on the day of main phase (MP1) onset (06:30 LT) and negative ionospheric storms in American longitudes (≈65°–120°W) on the following day of MP1 onset (13:00–16:00 LT). The relative effects of the main drivers of the positive ionospheric storms (penetrating daytime eastward electric field, and direct and indirect effects of equatorward neutral wind) are studied using the Sheffield University Plasmasphere Ionosphere Model (SUPIM). The model results show that the penetrating daytime (morning–noon) eastward electric field shifts the equatorial ionisation anomaly crests in NmF2 and TEC (total electron content) to higher than normal latitudes and reduces their values at latitudes at and within the anomaly crests while the direct effects of the equatorward wind (that reduce poleward plasma flow and raise the ionosphere to high altitudes of reduced chemical loss) combined with daytime production of ionisation increase NmF2 and TEC at latitudes poleward of the equatorial region; the later effects can be major causes of positive ionospheric storms at mid latitudes. The downwelling (indirect) effect of the wind increases NmF2 and TEC at low latitudes while its upwelling (indirect) effect reduces NmF2 and TEC at mid latitudes. The net effect of all main drivers is positive ionospheric storms at low-mid latitudes in Japan longitude, which qualitatively agrees with the observations.  相似文献   

6.
Gravity wave effects in the nocturnal thermospheric F-region domain are seldom detected in the intertropical region by optical (airglow) techniques, especially during geomagnetically quiet times, in part because the low inclination of the magnetic field, as opposed to the case of the mid-latitude region, does not favor significant vertical excursions of ionospheric plasma in response to meridional winds. Such difficulty in detecting gravity wave signatures in the F-region by means of optical techniques tends to increase in the absence of geomagnetic storms because of the lack of strong forcing mechanisms necessary to generate high intensity gravity waves. The purpose of this work is to show that during the quiet day of 9 August 1999, the Terminator may have been a source region of wave-like disturbances in the nocturnal F-region at the low-latitude station Cachoeira Paulista (22°41'S; 45°00W, dip 30°). A digital all-sky OI 630nm imager system located at that station has shown propagating wave-like spatial structures in the airglow intensity near the Terminator. This observation supports a previous study on the evidence of the presence of gravity waves during the post-sunset period at the same location by means of a scanning photometer system (1997, Sobral, J. Atmos. Terr. Phys. 59, 1611–1623). The absence of range-type spread-F as monitored by a local digisonde and the absence of radio wave scintillation as monitored by a local GPS receiver, excludes the hypothesis that the wave-like airglow structures are associated with the occurrence of the ionospheric plasma bubbles. Downwards motion of the iso-density real height contours at 22.0 ms−1 and 33.1 ms−1 are observed. The wave detection by the imager system is reported and discussed here.  相似文献   

7.
We describe a Parameterized Regional Ionospheric Model (PARIM) to calculate the spatial and temporal variations of the ionospheric electron density/plasma frequency over the Brazilian sector. The ionospheric plasma frequency values as calculated from an enhanced Sheffield University Plasmasphere–Ionosphere Model (SUPIM) were used to construct the model. PARIM is a time-independent 3D regional model (altitude, longitude/local time, latitude) used to reproduce SUPIM plasma frequencies for geomagnetic quiet condition, for any day of the year and for low to moderately high solar activity. The procedure to obtain the modeled representation uses finite Fourier series so that all plasma frequency dependencies can be represented by Fourier coefficients. PARIM presents very good results, except for the F region peak height (hmF2) near the geomagnetic equator during times of occurrence of the F3 layer. The plasma frequency calculated by IRI from E region to bottomside of the F region present latitudinal discontinuities during morning and evening times for both solar minimum and solar maximum conditions. Both the results of PARIM and the IRI for the E region peak density show excellent agreement with the observational values obtained during the conjugate point equatorial experiment (COPEX) campaign. The IRI representations significantly underestimate the foF2 and hmF2 compared to the observational results over the COPEX sites, mainly during the evening–nighttime period.  相似文献   

8.
Nighttime thermospheric meridional winds aligned to the magnetic meridian have been inferred using hF and hpF2 ionosonde data taken from two equatorial stations, Manaus (2.9°S, 60.0°W, dip latitude 6.0°N) and Palmas (10.17°S, 48.2°W, dip latitude 6.2°S), and one low-latitude station, Sao Jose dos Campos (23.21°S, 45.86°W, dip latitude 17.26°S), during geomagnetic quiet days of August and September, 2002. Using an extension of the ionospheric servo model and a simple formulation of the diffusive vertical drift velocity, the magnetic meridional component of the thermospheric neutral winds is inferred, respectively, at the peak (hpF2) and at the base (hF) heights of the F region over Sao Jose dos Campos. An approach has been included in the models to derive the effects of the electrodynamic drift over Sao Jose dos Campos from the time derivative of hpF2 and hF observed at the equatorial stations. The magnetic meridional winds inferred from the two methods, for the months of August and September, are compared with winds calculated using the HWM-90 model and with measurements from Fabry–Perot technique. The results show varying agreements and disagreements. Meridional winds calculated from hpF2 ionospheric data (servo model) may produce errors of about 59 m/s, whereas the method calculated from the F-region base height (hF) ionospheric data gives errors of about 69 m/s during the occurrence of equatorial spread-F.  相似文献   

9.
The responses of the thermospheric density and ionospheric foF2 to the intense magnetic storms event on 17–20 April were analyzed by using data from CHAMP/STAR and ionosonde stations respectively, and NRLMSISE-00 and IRI-2007 models were used to simulate. The models can capture the tendency of changes, especially under quiet or moderate geomagnetic conditions, but are less accurate under geomagnetic storms. The thermospheric density is sensitive to the EUV emission and geomagnetic activity, and double-peak structure appeared in the dayside. On 19 April dayside, TADs traveled toward the equator with phase speeds of the order of 300–750 m/s, interfered near the equator to produce a total density perturbation of 25%, and then passed through each other and into the opposite hemisphere. For ionospheric foF2, there are non-symmetric hemispheres’ features during the intense geomagnetic activities. In details, middle latitudes in the north and high latitudes in both hemispheres are negative ionospheric storms, and the maximum amplitudes of δfoF2δfoF2 is about 60%, but the amplitudes decrease from the higher to lower latitudes in the Southern Hemisphere. Meanwhile, the equatorial station shows positive phase, and the maximum value is about 100%. Finally, the mechanisms for these features will be discussed in this study.  相似文献   

10.
Electron concentration (Ne) inferred from Incoherent Scatter Radar (ISR) measurements has been used to determine the influence of solar flux and geomagnetic activity in the ionospheric E-region over Arecibo Observatory (AO). The approach is based on the determination of column integrated Ne, referred to as E-region total electron content (ErTEC) between 80 and 150 km altitude regions. The results discussed in this work are for the AO nighttime period. The study reveals higher ErTEC values during the low solar flux periods for all the seasons except for summer period. It is found that the E-region column abundance is higher in equinox periods than in the winter for low solar activity conditions. The column integrated Ne during the post-sunset/pre-sunrise periods always exceeds the midnight minima, independent of season or solar activity. This behavior has been attributed to the variations in the coupling processes from the F-region. The response of ErTEC to the geomagnetic variability is also examined for different solar flux conditions and seasons. During high solar flux periods, changes in Kp cause an ErTEC increase in summer and equinox, while producing a negative storm-like effect during the winter. Variations in ErTEC due to geomagnetic activity during low solar flux periods produce maximum variability in the E-region during equinox periods, while resulting in an increase/decrease in ErTEC before local midnight during the winter/summer periods, respectively.  相似文献   

11.
This study presents an analysis of the observed north-south asymmetry of the range spread F (RSF) intensity at the low latitude region during an equinoctial month of different solar epochs (2002, 2015 and 2017). The ionospheric parameters were obtained during geomagnetic quiet days from four digisonde stations located along the Brazilian longitude, which include a dip equator station (Sao Luiz (SL: 2.33 S, 44.2 W)), conjugate stations (Campo Grande (CG: 20.5°S, 55°W) and Boa Vista (BV: 2.8°N, 60.7°W)) and another low latitude station (Cachoeira Paulista (CP: 22.7°S, 45°W)). The results highlight the competing effect of the post-sunset electric field strength and the trans-equatorial wind on the latitudinal distribution of the irregularity intensity at both hemispheres under varying background ionospheric condition. The RSF intensity was seen to reduce as the solar flux index decreased and the latitudinal peak shifted closer to the dip equator. This was dependent on the variation of the field line mapped irregularity spectrum and the density gradient. Likewise, the north-south asymmetry in the irregularity occurrence was seen to become more significant as a denser ionosphere was observed at the hemisphere with the equatorward meridional wind. This has further proven that the non-linear cascading of the plasma irregularity across the low latitude region is strongly influenced by the local electric field.  相似文献   

12.
The ionospheric plasma density can be significantly disturbed during magnetic storms. In the conventional scenario of ionospheric storms, the negative storm phases with plasma density decreases are caused by neutral composition changes, and the positive storm phases with plasma density increases are often related to atmospheric gravity waves. However, recent studies show that the global redistribution of the ionospheric plasma is dominated primarily by electric fields during the first hours of magnetic storms. In this paper, we present the measurements of ionospheric disturbances by the DMSP satellites and GPS network during the magnetic storm on 6 April 2000. The DMSP measurements include the F region ion velocity and density at the altitude of ∼840 km, and the GPS receiver network provides total electron content (TEC) measurements. The storm-time ionospheric disturbances show the following characteristics. The plasma density is deeply depleted in a latitudinal range of ∼20° over the equatorial region in the evening sector, and the depletions represent plasma bubbles. The ionospheric plasma density at middle latitudes (20°–40° magnetic latitudes) is significantly increased. The dayside TEC is increased simultaneously over a large latitudinal range. An enhanced TEC band forms in the afternoon sector, goes through the cusp region, and enters the polar cap. All the observed ionospheric disturbances occur within 1–5 h from the storm sudden commencement. The observations suggest that penetration electric fields play a major role in the rapid generation of equatorial plasma bubbles and the simultaneous increases of the dayside TEC within the first 2 h during the storm main phase. The ionospheric disturbances at later times may be caused by the combination of penetration electric fields and neutral wind dynamo process.  相似文献   

13.
An empirical model of electron temperature (Te) for low and middle latitudes is proposed in view of IRI. It is constructed on the basis of experimental data obtained at 100 to 200 km by probe and incoherent scatter methods. Below 150 km the model gives two Te values: one from incoherent scatter data and another from probe measurements. The model can be used for all seasons for quiet geomagnetic conditions (Kp not greater 3) and at almost all levels of solar activity (F10.7 between 70 and 200). It is presented in an analytical form that allows one to calculate Te profiles for different latitudes, longitudes and at any season (day). Depending on geomagnetic latitude and solar zenith angle, electron temperature distributions are presented for two heights along with Te profile variations during the day (at middle latitudes).  相似文献   

14.
Ionograms recorded from four ionosonde stations along the Western Pacific (WestPac) chain (about 122°E geographic, 192°E geomagnetic) are employed to study the occurrence of an additional layer at F-region altitudes during the 1–15 March 1998 WestPac campaign. It was found that the appearance of the additional layer at the local noontime hours is a typical phenomenon at Parepare (4°S geographic, 14.8°S geomagnetic). The additional layer was not clearly observed at Cebu (0.4°S geomagnetic) and Manila (3.7°N geomagnetic), and was not observed at Chung-Li (14.2°N geomagnetic) during the campaign. Furthermore, the additional layer was not seen from any of the station on 11 March 1998, a magnetically disturbed day. These results indicate that the fountain effect (produced by E×B motion) plays an important role in the formation of the additional layer. However, they also suggest the dynamics of the layer formation are in some way influenced by the location of the station relative to the geographic equator.  相似文献   

15.
利用第24太阳活动周中国多个地区GNSS电离层闪烁监测站数据,统计分析中国中低纬地区电离层闪烁特性.结果显示:电离层闪烁主要发生在春秋分及夜间20:00—02:00LT时段;在28°N以南地区,纬度越低电离层闪烁强度和发生概率越高;电离层闪烁发生概率与太阳活动呈正相关,太阳活动上升年电离层闪烁发生概率高于下降年;不同强度地磁活动条件下,电离层闪烁均可能发生,且与地磁活动强度整体呈负相关.通过研究电离层闪烁统计特性,可以为电离层闪烁机理的深入研究、预报及工程应用提供参考.   相似文献   

16.
The geomagnetic storm is a complex process of solar wind/magnetospheric origin. The variability of the ionospheric parameters increases substantially during geomagnetic storms initiated by solar disturbances. Various features of geomagnetic storm act at various altitudes in the ionosphere and neutral atmosphere. The paper deals with variability of the electron density of the ionospheric bottomside F region at every 10 km of altitude during intense geomagnetic storms with attention paid mainly to the distribution of the F1 region daytime ionisation. We have analysed all available electron density profiles from some European middle latitude stations (Chilton, Pruhonice, Ebro, Arenosillo, Athens) for 36 events that occurred in different seasons and under different levels of solar activity (1995–2003). Selected events consist of both depletion and increase of the F2 region electron density. For European higher middle and middle latitude the F1 region response to geomagnetic storm was found to be negative (decrease of electron density) independent on the storm effect on the F2 region. For lower middle latitude the F1 response is weaker and less regular. Results of the analysis also show that the maximum of the storm effect may sometimes occur below the height of the maximum of electron density (NmF2).  相似文献   

17.
In the present paper, plasma probe data taken from DEMETER and DMSP-F15 satellites were used to study the ion density and temperature disturbances in the morning topside ionosphere, caused by seismic activity at low latitudes. French DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions) micro-satellite mission had been especially designed to provide global scale observations in the topside ionosphere over seismically active regions. Onboard the DEMETER satellite, the thermal plasma instrument called “Instrument Analyser de Plasma” (IAP) provides ion mass and densities, ion temperature, three component ion drift and ion density irregularities measurements. As a part of “Defense Meteorological Satellite Program”, DMSP-F15 satellite is on orbit operation since 1999. It provides ionospheric plasma diagnostics by means of the “Special Sensor-Ion, Electron and Scintillations” (SSIES-2) instrument. We examined few examples of possible seismic effects in the equatorial ionosphere, probably associated with seismic activity during December month in the area of Sumatra Island, including main shock of giant Sumatra event. It is found that the localized topside ionospheric disturbances appear close to the epicenters of certain earthquakes in the Sumatra region. In two cases, ion H+/O+ ratio rises more than one hour before the main shock, due to the O+ density decrease at the winter side of the geomagnetic equator, with longitudinally closest location to the epicenter of the earthquakes. These anomalous depletions in O+ density do exist in all cases of SSIES-2 data. Particularly for Sumatra main event, more than one hour after the main shock, we observe large-scale depletion in O+ density northward of the geomagnetic equator at winter side hemisphere. Associated with O+ depletion, ion temperature latitudinal profile around the geomagnetic equator shows enhanced asymmetry with minimum at the summer side and maximum in positive Ti deviation from mean value at the winter side. This disturbance lasted for more than three hours, later in time observed at the same place by IAP/DEMETER.  相似文献   

18.
曹冲 《空间科学学报》1987,7(4):285-289
本文利用位于不变纬度∧=46°—70°S之间的四个电离层站的观测数据,分析了电离层主糟的基本特性.分析结果表明,电离层主槽有如下特征:(1)槽在冬季夜间出现较为明显,春秋季夜间较弱,夏季夜间和所有季节的白天均观测不到;(2)槽的特点有二,一是其电子密度异常地低,二是层的虚高有较大的增加;(3)槽的极向壁较稳定,且有较陡峭的电子密度梯度,而槽的赤道向壁较多变,电子密度梯度较平缓;(4)槽出现的主要时段是在20:00—03:00(LT),在此期间,槽处于不断的变化和运动之中.   相似文献   

19.
Ionospheric disturbances are known to have adverse effects on the satellite-based communication and navigation. One particular type of ionospheric effects, observed during major geomagnetic storms and threatening the integrity performance of both ground-based and space-based GNSS augmentation systems, is the sharp increase/decrease in the ionospheric delay that propagates in horizontal direction, thus called for convenience ‘moving ionospheric wall’. This paper presents preliminary results from researching such anomalous ionospheric delay gradients at European middle latitudes during the storm events of 29 October 2003 and 20 November 2003. For the purpose, 30-s GPS data from the Belgian permanent network was used for calculating and analysing the slant ionospheric delay and total electron content values. It has been found that, during these two particular storm events, substantial gradients did occur in Europe although they were not so pronounced as in the American sector.  相似文献   

20.
In this paper, the response of the equatorial and low latitude ionosphere to three intense geomagnetic storms occurred in 2002 and 2003 is reported. For that, critical frequency of F2-layer foF2 and the peak height hmF2 hmF2 for the stations Jicamarca (11.9°S), Ascension Is (7.92°S) and Tucuman (26.9°S) are used. The results show a “smoothing” of the Equatorial Anomaly structure during the development of the storms. Noticeable features are the increases in foF2 before the storm sudden commencement (SC) at equatorial latitudes and the southern crest of the Equatorial Anomaly. In some cases nearly simultaneous increases in foF2 are observed in response to the storm, which are attributed to the prompt electric field. Also, positive effects observed at equatorial and low latitudes during the development of the storm seem to be caused by the disturbance dynamo electric field due to the storm-time circulation. Increases in foF2 above the equator and simultaneous decreases in foF2 at the south crest near to the end of a long-duration main phase are attributed to equatorward-directed meridional winds. Decreases in foF2 observed during the recovery phase of storms are believed to be caused by composition changes. The results indicate that the prompt penetration electric field on the EA is important but their effect is of short lived. More significant ionospheric effects are the produced by the disturbance dynamo electric field. The role of storm-time winds is important because they modify the “fountain effect” and transport the composition changes toward low latitudes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号