首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 652 毫秒
1.
针对火箭助推器的伞降回收稳定减速阶段,开展了助推器回收系统各部分受力分析,建立了多体系统的动力学方程组和约束方程组;同时搭建了火箭助推器回收系统的动力学模型,模拟了火箭助推器回收系统开始工作直至翼伞开伞前的整个过程。仿真结果表明:稳定伞和减速伞对火箭助推器起到了稳定姿态和减速作用,为翼伞开伞提供了条件;通过与试验数据的对比,验证了火箭助推器回收系统动力学模型的准确性。  相似文献   

2.
翼伞空投系统的动力学建模与飞行控制仿真   总被引:2,自引:0,他引:2  
针对翼伞系统设计及翼伞归航方案的研究需求,提出翼伞系统动力学建模与仿真分析方法,利用动力学仿真软件ADAMS对翼伞空投系统飞行动力学过程进行了计算.针对翼伞系统精确空投任务,利用分段归航方法规划翼伞系统飞行轨迹并搭建PID控制系统对翼伞系统的飞行轨迹进行控制.结果表明:翼伞系统受到单侧下偏操纵时,影响的是翼伞系统的转弯性能,翼伞的飞行轨迹为螺旋形曲线,并且翼伞系统在下降过程中,其转弯半径保持不变,分段归航方法简单,易于实现,满足翼伞归航对落点精度的要求.  相似文献   

3.
翼伞系统动力学建模与仿真研究   总被引:1,自引:0,他引:1       下载免费PDF全文
以精确空投系统研究为背景,综合运用运动力学和空气动力学知识,建立了翼伞系统6自由度非线性动力学模型,该模型包括3自由度沿系统质心的平动和3自由度绕系统质心的转动.根据此模型分析了翼伞系统的整体运动特性(包括运动轨迹和姿态等),并进行了常值风场对翼伞系统飞行特性的影响研究,得出了翼伞系统在滑翔、转弯和雀降模态下的主要飞行参数,从而为翼伞系统飞行控制系统的设计提供了重要的理论依据.  相似文献   

4.
深入研究翼伞后缘偏转过程的气动与结构耦合动力学问题是解决大型翼伞精确空投系统机动转弯和雀降等操纵动作设计分析的重点内容。首先基于ALE算法和罚函数耦合方法对翼伞后缘偏转过程进行流固耦合动力学建模,之后基于结构化的ALE求解方法和瞬态非线性求解器对翼伞三维模型的单个气室后缘偏转进行仿真验证,预测了后缘偏转运动引起的周围流场流动分离现象。分别针对翼伞后缘单侧下偏和双侧下偏过程的流固耦合行为进行仿真分析,获得全时域内翼伞结构场和周围流场特性动态演化结果,以及翼伞气动性能参数时间历程曲线,发现了后缘下偏过程的操纵延迟现象。最后通过风洞试验对仿真结果进行验证,证明了方法的有效性,为大型冲压翼伞的设计和应用提供理论和技术支撑。  相似文献   

5.
考虑了运载器、分离体及牵引稳定伞的相互耦合作用,针对运载器-分离体的高空、超声速、内置式分离,建立了合理的多体系统动力学模型及系统的动力学方程组和约束方程组,模拟了分离体与运载器分离的整个过程。仿真结果表明,牵引稳定伞阻力特征的大小对系统的分离有较大的影响,且牵引稳定伞能够有效地制约分离体出舱过程中的运动,使其能够获得姿态相对稳定的点火状态及时刻;同时验证了利用牵引稳定伞安全分离的方案是可行的。  相似文献   

6.
风场对动力翼伞系统的运动状态有着重要的影响,获得风场中风的速度和方向可以使动力翼伞系统利用或者消除风场的影响。针对风场辨识问题,通过分析动力翼伞系统在风场作用下的飞行特性,提出了一种基于动力翼伞系统在风中的飞行状态进行风场辨识的方法。该方法仅使用动力翼伞系统配备的全球定位系统(GPS)模块采集定位数据,计算获得动力翼伞系统飞行的速度和方向,根据风场与动力翼伞系统的动态关系,利用最小二乘法对风场进行在线辨识。为了保证辨识精度,由GPS获得的动力翼伞系统运动信息经卡尔曼滤波器进行滤波处理。仿真结果表明:该方法对风场有较高的辨识效果,并能辅助实现雀降。  相似文献   

7.
基于冲压翼伞的MSD模型,采用流场、结构松耦合方法对冲压翼伞的充气过程开展数值模拟研究。通过将冲压翼伞简化为二维的伞衣剖面,分析单个伞衣剖面受到的气动力、重力和应力,并离散作用于由弹簧阻尼连接的质点上,建立了伞衣多节点模型,编写了多节点模型动力学方程组解算代码。结合流场计算得到的伞衣充气过程表面的气动力,对充气过程进行了动态仿真,初步分析了翼伞充气过程伞衣外形、流场和气动特性变化特点。  相似文献   

8.
为研究内置式重力空射火箭运动出舱的安全性,应用多体动力学软件(ADAMS)构建了重力空射载机-箭-伞系统的动力学仿真模型,利用动态链接子程序实现了气动力的加载,分析了稳定伞阻力特性、滚轮摩擦系数、载机飞行速度和载机飞行俯仰角对火箭出舱安全性的影响,根据仿真计算结果得出了影响因素对火箭运动出舱整个过程安全性的影响规律.  相似文献   

9.
朱虹  孙青林  邬婉楠  孙明玮  陈增强 《航空学报》2019,40(6):122593-122593
前缘切口以及后缘下偏是影响伞衣气动力计算的关键因素。为实现伞翼无人机(UAV)的精确控制,从提高翼伞系统动力学模型的精度入手,在升力线理论的基础上,基于计算流体动力学方法,综合考虑前缘切口以及后缘下偏的影响,计算了不同切口尺寸模型的升力、阻力系数。利用最小二乘法辨识了升力、阻力系数与迎角、切口尺寸以及下偏量的关系,实现了翼伞气动力的精确计算,改进了伞翼无人机的六自由度动力学模型。对改进的动力学模型进行轨迹跟踪控制的仿真,通过与空投试验数据的对比,验证了改进翼伞系统动力学模型方法的准确性,对于伞翼无人机的仿真和控制器设计具有重要意义。  相似文献   

10.
传统弹箭类飞行器由于机动能力限制,难以实现快速、小半径、大角度的敏捷转弯。通过导弹上加装可控翼伞作为控制面,提出一种翼伞-导弹系统,实现导弹敏捷转弯。首先针对由导弹、翼伞、伞绳、连接点组成的伞弹系统进行动力学建模,给出9自由度伞弹系统动力学模型。通过纵向平面内的弹道仿真,对比分析了在翼伞襟翼偏转角0°、25°和50°情况下伞弹系统的运动情况,结果表明翼伞-导弹系统可以实现敏捷转弯。通过对伞弹系统动力学模型进行分岔分析,研究了不同襟翼偏转角情况下,以翼伞安装角为连续变化参数时系统的分岔曲线,得到导弹实现敏捷转弯的最小转弯半径及最大转弯末速所对应的目标平衡点,分析了目标平衡点附近的吸引域变化情况。弹道仿真结果表明通过合理选取翼伞襟翼偏转角及安装角,可以使质量为73 kg的导弹实现最小转弯半径14.50 m,最小速度损失20.4 m/s。伞弹系统对于提高传统战术导弹的敏捷转弯性能具有重要参考意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号