首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
In our search for life on other planets over the past decades, we have come to understand that the solid terrestrial planets provide much more than merely a substrate on which life may develop. Large-scale exchange of heat and volatile species between planetary interiors and hydrospheres/atmospheres, as well as the presence of a magnetic field, are important factors contributing to the habitability of a planet. This chapter reviews these processes, their mutual interactions, and the role life plays in regulating or modulating them.  相似文献   

2.
The outer solar system is an important area of investigation for exobiology, the study of life in the universe. Several moons of the outer planets involve processes and structures comparable to those thought to have played an important role in the emergence of life on Earth, such as the formation and exchange of organic materials between different reservoirs. The study of these prebiotic processes on, and in, outer solar system moons is a key goal for exobiology, together with the question of habitability and the search for evidence of past or even present life. This chapter reviews the aspects of prebiotic chemistry and potential presence of life on Europa, Enceladus and Titan, based on the most recent data obtained from space missions as well as theoretical and experimental laboratory models. The habitability of these extraterrestrial environments, which are likely to include large reservoirs of liquid water in their internal structure, is discussed as well as the particular case of Titan’s hydrocarbon lakes. The question of planetary protection, especially in the case of Europa, is also presented.  相似文献   

3.
Which stars are the best stars to search for habitable planets and signs of life? This is a trick question, because it depends not only on the kind of circumstellar environment we think is likely to be supportive to life as we know it, but it depends also on the technique being used to do the search. For example, the Catalog of Nearby Habitable Stellar Systems was designed for SETI, a search for technological signals. Because this search strategy relies on life forms out-shining their star (at least at certain frequencies), target selection is not complicated by the need to spatially resolve the habitable planets on which these life forms presumably live. On the other hand, because the life forms being sought are technologically advanced, it seems reasonable to assume that their planet had to be continuously habitable for long enough to evolve such biological complexity. Thus the deciding factor for SETI is that of long term habitability. Meanwhile, other missions to directly detect habitable planets (e.g., NASA’s TPF and ESA’s Darwin) are less worried about long term habitability but must struggle with the competing factors of planet separation from the star and planet brightness relative to the star. This paper outlines a variety of challenges in the search for simple and complex life in the Solar Neighborhood.  相似文献   

4.
Near-term missions may be able to access samples of organic material from Mars, Europa, and Enceladus. The challenge for astrobiology will be to determine if this material is the remains of dead microorganisms or merely abiotic organic material. The remains of life that shares a common origin with life on Earth will be straightforward to detect using sophisticated methods such as DNA amplification. These methods are extremely sensitive but specific to Earth-like life. Detecting the remains of alien life—that does not have a genetic or biochemical commonality with Earth life—will be much more difficult. There is a general property of life that can be used to determine if organic material is of biological origin. This general property is the repeated use of a few specific organic molecules for the construction of biopolymers. For example, Earth-like life uses 20 amino acids to construct proteins, 5 nucleotide bases to construct DNA and RNA, and a few sugars to construct polysaccharides. This selectivity will result in a statistically anomalous distribution of organic molecules distinct from organic material of non-biological origin. Such a distinctive pattern, different from the pattern of Earth-like life, will be persuasive evidence for a second genesis of life.  相似文献   

5.
Liquid water is a basic ingredient for life as we know it. Therefore, in order to understand the habitability of other planets we must first understand the behavior of water on them. Mars is the most Earth-like planet in the solar system and it has large reservoirs of H2O. Here, we review the current evidence for pure liquid water and brines on Mars, and discuss their implications for future and current missions such as the Mars Science Laboratory. Neither liquid water nor liquid brines are currently stable on the surface of Mars, but they could be present temporarily in a few areas of the planet. Pure liquid water is unlikely to be present, even temporarily, on the surface of Mars because evaporation into the extremely dry atmosphere would inhibit the formation of the liquid phase, where the temperature and pressure are high enough so that water would neither freeze nor boil. The exception to this is that monolayers of liquid water, referred to as undercooled liquid interfacial water, could exist on most of the Martian surface. In a few places liquid brines could exist temporarily on the surface because they could form at cryogenic temperatures, near ice or frost deposits where sublimation could be inhibited by the presence of nearly saturated air. Both liquid water and liquid brines might exist in the shallow subsurface because even a thin layer of soil forms an effective barrier against sublimation allowing pure liquid water to form sporadically in a few places, or liquid brines to form over longer periods of time in large portions of the planet. At greater depths, ice deposits could melt where the soil conductivity is low enough to blanket the deeper subsurface effectively. This could cause the formation of aquifers if the deeper soil is sufficiently permeable and an impermeable layer exists below the source of water. The fact that liquid brines and groundwater are likely to exist on Mars has important implications for geochemistry, glaciology, mineralogy, weathering and the habitability of Mars.  相似文献   

6.
The Mars Science Laboratory Mission (MSL), scheduled to land on Mars in the summer of 2012, consists of a rover and a scientific payload designed to identify and assess the habitability, geological, and environmental histories of Gale crater. Unraveling the geologic history of the region and providing an assessment of present and past habitability requires an evaluation of the physical and chemical characteristics of the landing site; this includes providing an in-depth examination of the chemical and physical properties of Martian regolith and rocks. The MSL Sample Acquisition, Processing, and Handling (SA/SPaH) subsystem will be the first in-situ system designed to acquire interior rock and soil samples from Martian surface materials. These samples are processed and separated into fine particles and distributed to two onboard analytical science instruments SAM (Sample Analysis at Mars Instrument Suite) and CheMin (Chemistry and Mineralogy) or to a sample analysis tray for visual inspection. The SA/SPaH subsystem is also responsible for the placement of the two contact instruments, Alpha Particle X-Ray Spectrometer (APXS), and the Mars Hand Lens Imager (MAHLI), on rock and soil targets. Finally, there is a Dust Removal Tool (DRT) to remove dust particles from rock surfaces for subsequent analysis by the contact and or mast mounted instruments (e.g. Mast Cameras (MastCam) and the Chemistry and Micro-Imaging instruments (ChemCam)).  相似文献   

7.
The space shuttle external tank, which consists of a liquid oxygen tank, an intertank structure, and a liquid hydrogen tank, is an expendable structure used for approximately 8.5 min during each launch. A concept for outfitting the liquid oxygen tank-intertank unit for a 12-person lunar habitat is described. The concept utilizes existing structures and openings for both man and equipment access without compromising the structural integrity of the tank. Living quarters, instrumentation, environmental control and life support, thermal control, and propulsion systems are installed at Space Station Freedom. The unmanned habitat is then transported to low lunar orbit and autonomously soft landed on the lunar surface. Design studies indicate that this concept is feasible by the year 2000 with concurrent development of a space transfer vehicle and manned cargo lander for crew changeover and resupply.  相似文献   

8.
Liquid water is essential for life as we know it, i.e. carbon-based life. Although other compound-solvent pairs that could exist in very specific physical environments could be envisaged, the elements essential to carbon and water-based life are among the most common in the universe. Carbon molecules and liquid water have physical and chemical properties that make them optimised compound-solvent pairs. Liquid water is essential for important prebiotic reactions. But equally important for the emergence of life is the contact of carbon molecules in liquid water with hot rocks and minerals. We here review the environmental conditions of the early Earth, as soon as it had liquid water at its surface and was habitable. Basing our approach to life as a “cosmic phenomenon” (de Duve 1995), i.e. a chemical continuum, we briefly address the various hypotheses for the origin of life, noting their relevance with respect to early environmental conditions. It appears that hydrothermal environments were important in this respect. We continue with the record of early life noting that, by 3.5 Ga, when the sedimentary environment started being well-preserved, anaerobic life forms had colonised all habitable microenvironments from the sea floor to exposed beach environments and, possibly, in the photic planktonic zone of the sea. Life on Earth had also evolved to the relatively sophisticated stage of anoxygenic photosynthesis. We conclude with an evaluation of the potential for habitability and colonisation of other planets and satellites in the Solar System, noting that the most common life forms in the Solar System and probably in the Universe would be similar to terrestrial chemotrophs whose carbon source is either reduced carbon or CO2 dissolved in water and whose energy would be sourced from oxidized carbon, H2, or other transition elements.  相似文献   

9.
The Rover Environmental Monitoring Station (REMS) will investigate environmental factors directly tied to current habitability at the Martian surface during the Mars Science Laboratory (MSL) mission. Three major habitability factors are addressed by REMS: the thermal environment, ultraviolet irradiation, and water cycling. The thermal environment is determined by a mixture of processes, chief amongst these being the meteorological. Accordingly, the REMS sensors have been designed to record air and ground temperatures, pressure, relative humidity, wind speed in the horizontal and vertical directions, as well as ultraviolet radiation in different bands. These sensors are distributed over the rover in four places: two booms located on the MSL Remote Sensing Mast, the ultraviolet sensor on the rover deck, and the pressure sensor inside the rover body. Typical daily REMS observations will collect 180 minutes of data from all sensors simultaneously (arranged in 5 minute hourly samples plus 60 additional minutes taken at times to be decided during the course of the mission). REMS will add significantly to the environmental record collected by prior missions through the range of simultaneous observations including water vapor; the ability to take measurements routinely through the night; the intended minimum of one Martian year of observations; and the first measurement of surface UV irradiation. In this paper, we describe the scientific potential of REMS measurements and describe in detail the sensors that constitute REMS and the calibration procedures.  相似文献   

10.
The mission goal of the 2009 Mars Science Laboratory is to assess the habitability of a region on Mars. This large rover incorporates an Analytical Laboratory that contributes to this mission objective by means of a detailed characterization of mineralogy and chemistry. The Sample Analysis at Mars instrument suite in the Analytical Laboratory provides the capability to analyze volatiles released from rocks and soils and gases directly sample from the atmosphere. A primary focus of this suite is the detection and identification of organic molecules. The protocols for the extraction and analysis of organics under development for this mission are described as are experiments carried out on Mars analog samples to evaluate these methods.  相似文献   

11.
夹杂对粉末高温合金裂纹扩展寿命的影响   总被引:7,自引:3,他引:4  
采用有限元方法中的奇异单元,研究了当粉末高温合金FGH 95中存在由夹杂引起的裂纹时,夹杂对裂纹应力强度因子的影响;并在此基础上,利用Paris公式,计算了夹杂对裂纹扩展寿命的影响。研究结果表明:当夹杂处于裂纹的不同位置时,对应力强度因子的影响趋势也不同,且硬夹杂的影响趋势与软夹杂相反;存在软夹杂时,将夹杂当作初始裂纹,不考虑夹杂的影响得出的裂纹扩展寿命结果是安全的,而对于硬夹杂得出的结果偏于危险,对于FGH 95粉末高温合金,夹杂相对于基体材料其弹性模量偏小,为软夹杂,因此将夹杂当作初始裂纹计算裂纹扩展寿命时不考虑夹杂的影响,将得到偏于安全的裂纹扩展寿命计算结果。这一结论为简化粉末冶金涡轮盘的寿命分析提供了依据。   相似文献   

12.
The Radiation Assessment Detector (RAD) Investigation   总被引:1,自引:0,他引:1  
The Radiation Assessment Detector (RAD) on the Mars Science Laboratory (MSL) is an energetic particle detector designed to measure a broad spectrum of energetic particle radiation. It will make the first-ever direct radiation measurements on the surface of Mars, detecting galactic cosmic rays, solar energetic particles, secondary neutrons, and other secondary particles created both in the atmosphere and in the Martian regolith. The radiation environment on Mars, both past and present, may have implications for habitability and the ability to sustain life. Radiation exposure is also a major concern for future human missions. The RAD instrument combines charged- and neutral-particle detection capability over a wide dynamic range in a compact, low-mass, low-power instrument. These capabilities are required in order to measure all the important components of the radiation environment. RAD consists of the RAD Sensor Head (RSH) and the RAD Electronics Box (REB) integrated together in a small, compact volume. The RSH contains a solid-state detector telescope with three silicon PIN diodes for charged particle detection, a thallium doped Cesium Iodide scintillator, plastic scintillators for neutron detection and anti-coincidence shielding, and the front-end electronics. The REB contains three circuit boards, one with a novel mixed-signal ASIC for processing analog signals and an associated control FPGA, another with a second FPGA to communicate with the rover and perform onboard analysis of science data, and a third board with power supplies and power cycling or “sleep”-control electronics. The latter enables autonomous operation, independent of commands from the rover. RAD is a highly capable and highly configurable instrument that paves the way for future compact energetic particle detectors in space.  相似文献   

13.
文化旅游的产业属性及其发展战略——以成都市为例   总被引:5,自引:1,他引:5  
分析了文化旅游和旅游的含义,认为文化旅游与旅游的根本区别在于是否以创意为前提,把文化旅游定义为创意产业,就为发展文化旅游找到了方向。并据此分析了成都的旅游资源,指出当前成都文化旅游的发展中存在混淆旅游和文化旅游以及把某一文化样式当作旅游片面发展的误区,提出将成都定位成富有多元文化魅力的度假休闲基地的发展思路。  相似文献   

14.
宇航服作为服装成员中新贵是近几十年出现的 ,它的设计元素、设计法则、设计理念是鲜为人知的。维系生命系统的功能设计、高科技成果综合体现、功能与审美结合是它设计的重要元素与理念。从功能上分 ,有舱内用和舱外活动用宇航服 ;从服装内的压力上分 ,有高压和低压宇航服 ;从结构上分 ,有软式、硬式和软硬结合式宇航服。宇航服的设计能力与制作水平 ,是一个国家的综合国力、高科技发展水平和航天事业发展水平的体现。  相似文献   

15.
The effects of human error on aviation and space flight are discussed and the role of human factor engineering in aviation and aerospace safety is examined. Specific areas discussed are docking and extravehicular activity; quantification of human capacity for space station design; and measurement of habitability, workload, and task analysis.  相似文献   

16.
The Earth is inhabited by life not just at its surface, but down to a depth of kms. Like surface life, this deep subsurface life produces a fossil record, traces of which may be found in the pore space of practically all rock types. The (palaeo)subsurface of other planetary bodies is therefore a promising target in the search for another example of life. Subsurface filamentous fabrics (SFFs), i.e. mineral encrustations of a filament-based textural framework, occur in many terrestrial rocks representing present or ancient subsurface settings. SFF are interpreted as mineral encrustations on masses of filaments/pseudofilaments of microbial origin. SFF are a common example of the fossil record of subsurface life. Macroscopic (pseudostalactites, U-shapes) and microscopic (filaments) characteristics make SFF’s a biosignature that can be identified with relative ease. SFF in the subsurface are probably about as common and easily recognizable as are stromatolites in surface environments. Close-up imagers (~50 micron/pixel resolution) and microscopes (~3 micron/pixel resolution) on upcoming Mars lander missions are crucial instruments that will allow the recognition of biofabrics of surface- and subsurface origin. The resolution available however will not allow the recognition of small (~1 micron) individual mineralized microbial cells. The microscopy of unprepared rock surfaces would benefit from the use of polarizing filters to reduce surface reflectance and enhance internally reflected light. Tests demonstrate the potential to visualize mineralized filaments using this procedure.  相似文献   

17.
A fault-tolerant memory (FTM) architecture is presented which can be used to overcome soft memory errors induced by alpha particles, cosmic radiation, or other random sources. The characteristics of the FTM are presented, a mathematical model is developed, and numerical examples are considered to illustrate the effectiveness of the approach. The FTM architecture has been incorporated in the NASA Standard Spacecraft Computer (NSSC-II) which will be employed in a variety of future space payloads and experiments.  相似文献   

18.
研究自联想神经网络及其在发动机控制系统传感器故障诊断及重构中的应用。自联想神经网络关键在于特征提取和噪声滤波。综合自联想网络的最优估计与故障诊断 ,自动区分估计误差和传感器故障。仿真结果表明这种方法不需要模型 ,能诊断传感器硬、软故障 ,当发动机性能蜕化时也能提供很好的解析余度。  相似文献   

19.
为了给航空发动机在整个使用周期内送修方案的制定提供支持,降低发动机使用周期内的大修成本,针对单元体结构的民用航空发动机,基于制造商的发动机维修管理大纲,同时考虑时寿件寿命和单元体超出软时限导致性能衰退而造成发动机送修的情况,设定大修间隔不超过最大送修间隔,建立了一种以送修时间间隔为优化变量,以单位飞行小时送修成本最小为优化目标的发动机大修成本优化模型。采用遗传算法对模型进行求解,并以V2500发动机为例,对其25年里多次返厂送修方案进行了优化,表明当送修次数为6次时返厂大修成本最低,并给出了相应的各单元体的修理级别,该方法可为航空公司制定发动机送修方案提供参考。   相似文献   

20.
In light of assessing the habitability of Mars, we examine the impact of the magnetic field on the atmosphere. When there is a magnetic field, the atmosphere is protected from erosion by solar wind. The magnetic field ensures the maintenance of a dense atmosphere, necessary for liquid water to exist on the surface of Mars. We also examine the impact of the rotation of Mars on the magnetic field. When the magnetic field of Mars ceased to exist (about 4 Gyr ago), atmospheric escape induced by solar wind began. We consider scenarios which could ultimately lead to a decrease of atmospheric pressure to the presently observed value of 7 mbar: a much weaker early martian magnetic field, a late onset of the dynamo, and high erosion rates of a denser early atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号