首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
涡轮叶片是飞机发动机中服役条件最为苛刻的部件,其性能关系到发动机的工作安全。因叶片服役环境复杂,服役条件苛刻,在服役中不可避免地形成各类损伤,对其服役损伤进行研究,有着重要的工程意义和经济意义。本工作选用实际服役后的定向凝固合金涡轮叶片作为研究对象,截取叶身上部高度80%横截面位置,利用SEM和EDS分析等方法进行定性和定量的微观组织分析。结果显示:该叶片存在两种不同类型的γ’相。一类γ’相尺寸小,形状规则,另一类γ’相尺寸大,形状不规则;借助对各部位γ’相进行尺寸分布表征,结合截面各部位硬度测试分析,表征了叶片不同部位间的微观损伤程度。结果表明,不同部位的服役工况不同,微观组织损伤程度不同。此外,总结和分析了在叶片个别部位出现的基体裂纹和涂层损伤等情况。  相似文献   

2.
航空发动机涡轮叶片热障涂层应用的关键技术和问题   总被引:1,自引:0,他引:1  
热障涂层是提高涡轮叶片可靠性和服役寿命的关键技术。从热障涂层的粘结层与涡轮叶片高温合金基体的匹配性、CMAS(一种基于CaO、MgO、Al2O3和Si O2等多种氧化物构成的环境沉积物)形成及其对热障涂层的损伤和相应的防护、叶片热障涂层厚度分布的过程控制、热障涂层制备过程中气膜孔缩孔、热障涂层的在线无损检测及涂层返修以满足涡轮叶片全寿命周期需求等方面论述了航空发动机涡轮叶片热障涂层工程应用技术和需要解决的实际问题。  相似文献   

3.
单晶涡轮叶片热机械疲劳试验技术   总被引:2,自引:2,他引:0  
针对单晶空心气冷涡轮转子叶片的热机械疲劳(TMF)试验要求,建立了涡轮叶片热机械疲劳试验系统,包括加载、加热、气冷、水冷和控制等5个子系统.试验结果表明:该系统能够同时模拟服役条件下单晶涡轮叶片考核截面的应力场、温度场、气冷过程以及应力/温度谱等.利用该试验系统进行了单晶涡轮叶片考核截面的热机械疲劳试验,试验结果再现了涡轮叶片在服役状态下的失效模式.基于上述试验结果可以进行涡轮叶片的寿命预测和失效分析.   相似文献   

4.
为研究热障涂层对于涡轮叶片服役温度和应力的影响,以燃气轮机第一级涡轮动叶为研究对象,基于流热固耦合的数值仿真方法,分析了有无热障涂层及不同热障涂层厚度下,叶片的流动传热特征以及叶身应力响应变化规律,并将温度和应力分析结果与真实服役叶片热障涂层剥落和基体裂纹萌生失效等故障情况进行对比分析。结果表明:数值仿真方法可以揭示涡轮叶片实际运行中的温度和应力分布特征;热障涂层可有效降低叶片基体的平均温度,但是对于局部高温区,若没有良好的冷却设计配合,热障涂层的保护效果有限;热障涂层厚度变化未改变叶片高应力区位置,随着厚度增加,叶片危险部位的应力逐渐下降;对于本文的研究对象,与无热障涂层情况相比,0.4mm热障涂层可使得叶片高应力区域最大等效应力下降30~60MPa。  相似文献   

5.
对带热障涂层的单晶涡轮叶片进行模拟服役环境热冲击循环试验,并采用光学显微镜、扫描电镜对试验后的热障涂层进行分析。结果表明:带热障涂层单晶涡轮叶片经过42次热冲击循环后,叶片前缘气膜孔附近的涂层首先出现脱落;经过71次热冲击循环后,叶片前缘附近涂层脱落的面积明显增大。微观结构分析表明,热冲击环境下叶片前缘位置热生长氧化物(TGO)厚度比其他涂层未脱落位置的厚1.0~2.0μm。金属基底与粘结层之间有明显的扩散现象,其中Al、Cr元素从含量较高的粘结层向基底扩散,在叶片前缘扩散深度约为5.0μm,在其他位置扩散较少。叶片前缘位置TGO的生长速度明显快于其他位置,这导致前缘位置热障涂层承受的循环热应力更大。气膜孔边热应力较大是涂层脱落的主要原因,孔边涂层微观结构不规则加速了热障涂层的脱落掉块。单晶合金叶片热障涂层在模拟热冲击服役环境中失效剥落的过程,对研究其损伤评价和寿命评估具有重要作用。  相似文献   

6.
涡轮叶片是航空发动机及地面燃气轮机的重要热端部件,研究其损伤行为对涡轮叶片的制造及修复工作均有重要的意义。本文研究了长时与短时服役涡轮叶片的蠕变损伤行为,发现二者在蠕变空洞的形成机理上大致相同,而γ′相与碳化物的退化反应则有所差异,长时服役涡轮叶片的γ′相形貌更加粗大且不规则。对于碳化物,长时服役叶片的碳化物发生了由一次MC型向二次M23C6型的分解,而短时服役叶片的碳化物发生了由MC(1)型向MC(2)型的转化。此外,针对两种不同的叶片材料(K002和GTD-111高温合金),研究了不同的固溶处理制度对γ′相溶解行为的影响,发现提高固溶温度和增加固溶保温时间可以促进两种材料γ′相的溶解行为;而随着固溶时间的增加,两种材料的溶解激活能均逐渐增大,K002合金在不同固溶保温时间中的溶解激活能均大于GTD-111合金。  相似文献   

7.
高压涡轮(HPT)叶片是民用航空发动机的关键结构件之一,直接关系到发动机的性能、可靠性与使用寿命。提出了一种HPT叶片服役可靠性评估方法,基于服役条件下的历史工况参数,结合发动机性能模型、叶片关键点应力、温度计算模型、蠕变损伤评估模型对叶片蠕变损伤进行计算,之后考虑服役条件下的多模态数据,针对蠕变失效建立了累积损伤指数模型,融合历史协变量信息对叶片进行服役可靠性评估。仿真结果表明:采用文中定义的蠕变累积损伤指数,可充分利用发动机服役条件下的历史使用信息、状态参数及截尾失效数据,实现特定使用条件下的涡轮叶片服役可靠性评估及剩余寿命预测。相较于传统的可靠性分析方法,累积损伤指数预测模型能够基于单机服役条件提供更加可靠的评估结果,可为航空发动机运行风险评估与视情维修决策提供更好的支持。  相似文献   

8.
针对某型发动机高压涡轮工作叶片工作后材料组织退化的现象,对材料组织不同退化阶段的高压涡轮工作叶片进行持久试车风险分析,开展高压涡轮工作叶片持久试车前后的表观损伤、材料组织和力学性能对比分析,初步得出了表观损伤、材料组织和力学性能随使用时间的演变规律。  相似文献   

9.
热障涂层的服役工况恶劣、存在多耦合因素作用的失效机制和自身复杂多界面多相特征,使其研究极具挑战性。热障涂层的性能主要由其特殊的成分和微结构决定,在服役过程中受到温度、时间、环境等因素导致涂层发生退化。热障涂层使役性能评价是涂层性能改进和新涂层研发的必要途径,为了合理评价涂层寿命和深入研究涂层组织结构及性能演变规律,利用高温炉、火焰、红外灯、激光等不同热源,建立具有快速升降温、温度梯度模拟、腐蚀及CMAS沉积环境模拟、交变载荷功能的服役环境模拟实验装置,以获得低成本、测试条件灵活可控的表征手段及方法,用来研究涂层的失效机制、改善涂层材料及工艺和快速评价涂层的耐久性。  相似文献   

10.
热障涂层是航空发动机热端部件的重要功能材料,其强度与寿命分析技术是热障涂层应用基础研究的重点。涂层的提前失效将使金属基体暴露在高温燃气环境中,加速材料性能的退化,严重影响飞行安全。合理的强度评判标准以及寿命预测模型可以有效减小服役过程中热障涂层失效,提高发动机可靠性。介绍了热障涂层的损伤机理、寿命分析技术的发展现状,展望了航空发动机热障涂层寿命分析技术的发展趋势。  相似文献   

11.
定向凝固涡轮叶片高温低周疲劳的破坏特点   总被引:1,自引:0,他引:1  
针对几何形状完全相同但材料不同的两种涡轮叶片,采用相同的试验方法进行高温低周疲劳试验,普通铸造K403合金叶片和定向凝固DZ22B合金叶片却在不同的部位破坏,K403合金叶片在试验考核的榫齿部位断裂,而DZ22B合金叶片的榫齿在叶身根部断裂前均未出现裂纹.为了解释上述试验结果,展开了两类叶片试验条件应力场的有限元分析和...  相似文献   

12.
在使用工程计算方法对涡轮叶片温度场进行计算时,往往将叶片内流通道简化成光滑或带肋的换热管元件,容易忽略 各内流管段之间的影响,造成计算得到的叶片3维温度场与真实温度场存在较大差异。针对上述问题,为了提高对涡轮叶片3维 温度场模拟的准确度,对涡轮叶片内流通道的换热流动算法进行改进。考虑涡轮内部蜿蜒通道中弯转区和弯转效应2种因素对 涡轮内部流动换热的影响,使用试验得到的数据对2种因素影响区域的换热情况进行修正,利用修正后的算法对某工作叶片进行 温度场计算,并对修正前后叶片温度场进行了对比分析。结果表明:采用修正后算法得到的蜿蜒通道内的气体温度相较于修正前 算法得到的沿程升高更多,修正后算法求得的叶片整体平均温度降低,最大温差增大。  相似文献   

13.
利用数值计算和实验相结合的方法,对原型涡轮叶片、改进型叶片和简化后的内冷却通道的模型进行了研究。结果表明,改进的内部冷却通道结构较原型结构冷却效果提高了约7.8%。这种结构改型不但可以强化整个通道的换热,使叶片平均温度降低,同时还可以改善壁面温度的分布,消除局部过热产生的热应力。   相似文献   

14.
涡轮叶片榫齿部位疲劳/蠕变试验的新特点   总被引:2,自引:1,他引:1  
在某型航空发动机涡轮叶片的低周疲劳试验中发现, 叶片疲劳/蠕变试验寿命高于纯疲劳试验寿命, 为探究这一现象的原因, 对此展开相关的理论计算和分析.研究表明:试验条件较好地模拟了叶片的实际工作条件, 该涡轮叶片的损伤以疲劳损伤为主, 相对于真实涡轮叶片的纯疲劳试验, 在疲劳/蠕变试验条件下, 其考核部位(榫齿)出现了较大的应力松弛, 故而使得叶片疲劳/蠕变寿命高于纯疲劳寿命.研究结果对于保证发动机安全工作、提高飞行可靠性、以及发展高温构件的疲劳试验技术有重要意义.   相似文献   

15.
Thermal-mechanical fatigue(TMF)is the primary cause of failure of nickel-based single crystal turbine blades.TMF experiments have been performed on the critical section which is subjected to the most serious damage and determined by numerical calculation combined with service failure experience.An experimental system including the loading,heating,air cooling,water cooling,and control subsystems,is constructed to satisfy the TMF experimental requirements.This experimental system can simulate the stress feld,temperature feld,air cooling process,and TMF spectrum on the critical section under service conditions in a laboratory environment.A metal loading device and a new induction coil are developed to achieve the required stress and temperature distributions on the critical section,respectively.TMF experimental results have indicated that cracks initiated at the trailing edge of the suction surface on the critical section.Based on these experiments,life prediction and failure analysis of hollow single crystal turbine blades can be investigated.  相似文献   

16.
以高温合金低压涡轮叶片为原型,研究了采用SiC/SiC复合材料进行该型涡轮叶片结构设计的可行性。完成了SiC/SiC叶片的宏观设计、榫头设计和细节设计。计算分析了金属和复合材料涡轮叶片的变形和应力特点。对按设计制备的SiC/SiC叶片开展了拉伸强度测试,并在试验中监测了叶片的应变。计算结果表明:SiC/SiC叶片在额定状态下的伸长量低于原金属叶片;叶身叶根与缘板过渡处应力水平最高,但低于SiC/SiC复合材料的拉伸强度;榫头榫颈处有发生局部剪切破坏的风险。试验结果表明:该SiC/SiC叶片的断裂明显呈现出拉伸失效模式,以断裂转速计算的静强度储备系数约为1.3;所采用的SiC/SiC叶片结构设计方法可行,所制备的复合材料叶片也顺利通过了实验室条件下的静强度考核。  相似文献   

17.
针对航空发动机单晶涡轮叶片的制造技术以及再结晶缺陷进行分析,结合国内外研究现状,从单晶空心涡轮叶片铸造技术、单晶空心涡轮叶片再结晶缺陷及单晶叶片再结晶控制方法等方面,对单晶叶片制造技术及再结晶控制方法取得的研究成果进行总结和分析。重点介绍了叶片制造技术和再结晶控制技术的方法及研究。对我国单晶空心涡轮叶片制造技术及再结晶缺陷的进一步研究重点进行分析。  相似文献   

18.
胡晓安  石多奇  杨晓光  于慧臣 《航空学报》2019,40(3):422494-422494
针对空心涡轮叶片,发展了考虑瞬态变温效应的热机械疲劳(TMF)本构模型和寿命预测方法。第一,以某涡轮叶片用定向凝固合金DZ125为对象,开展了光棒、缺口TMF试验,结合已有的高温疲劳试验数据,获得了相位、温度范围、应力集中等因素对TMF寿命影响规律;第二,利用材料微观组织分析手段,揭示了导致光棒和缺口TMF失效的疲劳裂纹萌生机理;第三,借助于Chaboche本构模型,进行了各向异性、变温、蠕变损伤修正,建立了考虑变温效应的循环-蠕变本构模型,实现了DZ125合金拉伸、等温循环、蠕变、疲劳-蠕变以及TMF应力应变响应的统一建模和预测;第四,发展了疲劳-蠕变-氧化损伤累积的TMF寿命模型,利用简单纯疲劳和蠕变基础数据获得了寿命模型参数,并进一步发展了名义应力法预测了缺口模拟件的TMF寿命;最后,以某涡轮叶片为对象,进行了模拟飞行载荷谱条件下的瞬态变形响应计算和叶片TMF寿命预测。  相似文献   

19.
一种单晶涡轮叶片热机械疲劳寿命评估方法   总被引:2,自引:2,他引:0  
针对单晶涡轮叶片热机械疲劳(TMF)问题,围绕单晶涡轮叶片TMF试验,结合单晶变形、损伤理论及数值模拟,建立了一套单晶涡轮叶片TMF寿命评估方法.利用空心气冷涡轮叶片TMF试验系统,对单晶涡轮片考核截面在服役条件下所产生的交变应力场和交变温度场进行模拟,确定了裂纹萌生部位及其TMF寿命.考虑单晶涡轮叶片变形和损伤行为的特征,分别建立了基于滑移系的Walker黏塑性本构模型和基于临界平面的循环损伤累积(CDA)模型.利用上述本构和寿命模型,完成了单晶涡轮叶片TMF试验的数值模拟.结果表明:叶片理论危险点与试验结果一致,且计算寿命基本落在试验寿命的3倍分散带内.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号