首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
根据碳纤维复合材料制孔过程中产生的缺陷,自主磨制专用钻头——阶梯钻对碳纤维复合材料进行钻削实验,研究了在不同加工参数下阶梯钻钻削碳纤维复合材料的钻削力、孔出口质量、孔壁表面粗糙度,并与普通麻花钻头进行对比。结果表明:阶梯钻产生的钻削轴向力是麻花钻的一半,孔壁表面粗糙度值更小,孔出口没有明显的缺陷,阶梯钻适合钻削碳纤维复合材料。  相似文献   

2.
采用二刃双锋角钻头、三刃双锋角钻头和圆弧形钻头在不同加工参数下钻削CFRP,对比分析了孔入出口质量(入口损伤、毛刺和出口撕裂),并采用毛刺存在角度来衡量毛刺的多少。结果表明:随着进给量的增大毛刺存在的角度(范围)α先减小后增大;综合考虑孔入口和出口质量(毛刺和撕裂因子),三刃双锋角钻头最适合钻CFRP。  相似文献   

3.
针对碳纤维复合材料钻孔时易产生撕裂、毛刺等缺陷的特点,采用双锋角钻头为研究对象,从横刃、第一主切削刃和第二主切削刃对孔入、出口缺陷的影响和加工参数对撕裂因子的影响规律等方面分析双锋角钻头钻孔特点,并与普通麻花钻进行对比。结果表明:在相同的加工参数下,双锋角钻头双主切削刃加工特点降低了入、出口钻削轴向力,有效抑制了入、出口撕裂、毛刺等缺陷产生,更适合于钻削碳纤维复合材料。主轴转速增大有利于减小撕裂因子,随着进给速度的增加撕裂因子呈增大的趋势。采用多元线性回归方法建立了试验两种钻头钻孔入、出口的撕裂因子与加工参数之间的回归预测模型。  相似文献   

4.
采用不同几何参数硬质合金麻花钻对碳纤维复合材料(CFRP)进行钻削试验,研究了麻花钻几何参数对钻削轴向力、钻削温度、孔出口撕裂因子L_d及形貌的影响。结果表明:对CFRP进行钻削加工时,钻削轴向力随钻尖角的增大、螺旋角的减小及横刃长度的增大而增大。钻尖角和螺旋角对钻削温度无明显影响,随横刃长度的减小,钻削温度有所降低。小钻尖角和大螺旋角麻花钻制孔的出口撕裂因子L_d较小且形貌较好。综合考虑,钻尖角2θ选在90°~115°,螺旋角卢选用30°甚至更大,横刃长度b_ψ磨到0.2~0.6 mm比较合适。  相似文献   

5.
三种钻头钻削CFRP轴向力的时变曲线及预测   总被引:1,自引:1,他引:0  
采用二刃、三刃双锋角钻头和圆弧形钻头钻削CFRP单向板,研究钻削过程中轴向力时变曲线的特征,并探索用预测轴向力时变曲线上的关键拐点的方法来构建预测轴向力时变曲线模型。结果表明:三刃双锋角钻头的轴向力时变曲线最为稳定,钻削过程最为稳定;轴向力最大的是三刃双锋角钻头,其次是圆弧形钻头,最小的是二刃双锋角钻头,说明二刃双锋角钻头适合钻削CFRP;用预测轴向力时变曲线上的关键拐点的方法构建的轴向力时变曲线可以很好地预测双锋角钻头轴向力时变曲线。  相似文献   

6.
采用自主磨制的阶梯钻对钛合金进行钻削实验,并与普通麻花钻进行对比。分析了不同加工参数下的钻削力、切屑形态、孔径、孔壁表面粗糙度以及孔出入口毛刺。实验结果表明:钻削力随着主轴转速的增大而减小,随着进给量的增大而增大。相比普通麻花钻,阶梯钻产生的钻削力更小,切屑尺寸更小,排出顺畅,孔径值接近于钻头直径,孔壁表面粗糙度值更小,孔出入口毛刺少。  相似文献   

7.
为研究玻璃纤维复合材料钻削轴向力与分层特征,以电镀金刚石钻头和硬质合金麻花钻为钻削工具,对玻璃纤维复合材料进行正交钻削实验,研究钻头的几何形状、刀具材质以及钻削工艺参数对玻璃纤维复合材料钻削轴向力和钻削质量的影响。结果表明,钻削工艺参数直接影响玻璃纤维复合材料的钻削轴向力和钻削质量,高转速、低进给速度和合适的刀具结构、刀具材质能够降低钻削轴向力并改善加工质量。电镀金刚石钻头的轴向力和出口分层损伤大于硬质合金麻花钻的钻削轴向力和钻削出口分层损伤,电镀金刚石钻头的结构优化可以有效改善钻削质量。  相似文献   

8.
碳纤维复合材料钻削加工对比试验   总被引:1,自引:0,他引:1  
本文以CFRP材料为研究对象,使用钎焊金刚石套料钻和硬质合金麻花钻进行钻削加工试验,并对比2种钻头加工孔的质量和钻头磨损形貌,目的在于探讨钎焊金刚石套料钻加工CFRP材料的适用性。  相似文献   

9.
工艺参数和刀具参数对碳纤维复合材料/铝合金叠层材料的钻削轴向力及制孔质量具有重要的影响.使用普通硬质合金麻花钻对该叠层材料进行钻削试验,分析主轴转速、进给量、麻花钻顶角和螺旋角对钻削轴向力的影响规律,并对试验结果进行回归分析和方差分析,得到了关于工艺参数和刀具参数的初步优化结论.  相似文献   

10.
振幅对低频振动钻削CFRP/钛合金叠层材料的影响   总被引:1,自引:0,他引:1  
碳纤维增强树脂基复合材料(Carbon fiber reinforced plastic,CFRP)和钛合金组成的叠层材料因其出色的性能被广泛应用在航空航天领域。但两种材料的加工性能差异较大,在叠层材料一体化制孔过程中,CFRP制孔表面极易受到钛合金切屑排出的影响,出现入口撕裂、孔壁划伤等缺陷。为提高叠层材料制孔质量,通过低频振动钻削与传统钻削的对比试验,研究了刀具不同振幅(A=0μm、20μm、40μm、60μm)参数对切削力、切削温度及制孔质量等的影响。结果发现:钻削平均轴向力随着振幅增大而减小,而最大钻削轴向力增大。低频振动钻削较传统钻削加工温度有所下降。振动钻削对分层缺陷没有改善,且有增大缺陷的趋势,但对CFRP孔壁质量有明显改善。  相似文献   

11.
针对碳纤维增强复合材料在传统钻孔过程易出现分层缺陷,采用金刚石空心套刀和超声振动加工技术进行了CFRP超声振动套孔分层抑制机理分析。理论分析了传统麻花钻钻孔与金刚石套刀普通套孔过程的分层机理及评价,超声振动套孔对分层抑制的机理,并且进行了实验验证。结果表明:相比于CFRP普通套孔,超声振动套孔能够有效提高套刀切削性能和排屑效果,降低钻削力12.5%~19.2%,抑制切屑粉尘黏附套刀和料芯堵塞套刀,抑制CFRP分层缺陷形成,改善孔表面质量。  相似文献   

12.
在不同的工艺参数下用硬质合金麻花钻分别对碳纤维复合材料板和碳纤维复合材料板/钛合金叠层板进行钻孔,对钻孔过程用Abaqus有限元软件进行三维仿真,对比仿真和试验结果的轴向力和制孔效果。结果表明,在保证制孔的质量的前提下,选取合理的工艺参数,得到叠层材料制孔的工艺参数的优化结论。  相似文献   

13.
采用自主磨制的阶梯钻对碳纤维复合材料/钛合金叠层板进行钻削磨损试验,并与普通麻花钻进行对比,分析了阶梯钻刀具磨损过程。实验结果表明:阶梯钻主要磨损区域为横刃、第一后刀面和第二后刀面,其中第二后刀面磨损最为严重,相比普通麻花钻,阶梯钻产生的钻削力更小,阶梯钻刀具寿命远远高于普通麻花钻。  相似文献   

14.
采用硬质合金麻花钻对CFRP-TC4叠层板进行钻削试验,分析了钛合金层加工参数对钻削力、钻削温度和加工孔质量的影响。结果表明:随着转速的增加,钛合金层的轴向力逐渐减小;随着钛合金层进给量的增加,钛合金层与CFRP层的轴向力之比逐渐增加。运用指数公式模型对钛合金层轴向力实验结果进行回归分析,得到轴向力与转速以及进给量之间的关系式:F_z=2 088n~(-0.1222)·f_r~(0.2016),并对该方程进行了检验验证,误差均小于10%;在钛合金层进给量不变时,随着钛合金层转速的增加,CFRP的最大烧伤环直径和层间最高温度逐渐增加。  相似文献   

15.
李远霄  焦锋  张世杰  张顺  王雪  童景琳 《航空学报》2021,42(10):524802-524802
针对碳纤维增强复合材料(CFRP)和钛合金叠层结构在传统钻削过程中切削温度高、加工质量差等问题,基于低频振动钻削和高频(超声)振动钻削的优势,提出了高低频复合振动钻削的加工方法。采用自主研制的高低频复合振动钻削装置,对CFRP/钛合金叠层结构进行了制孔试验,对比研究了普通钻削、超声钻削、低频振动钻削和高低频复合振动钻削4种方式下的切削力、钛合金切屑形貌、切削温度和CFRP孔加工质量。结果表明:4种加工方式中,高低频复合振动钻削的轴向力波动相对较大,切削温度显著降低,产生的钛合金切屑呈不连续扇形且整体尺寸最小,CFRP孔出入口及孔壁的损伤程度最低,显著提高了加工质量,为复合材料叠层结构一体化制孔加工提供了指导意义。  相似文献   

16.
为探究CFRP/TC4叠层结构不同叠层顺序下的材料去除过程、两相材料及界面损伤形成机理,建立CFRP/TC4叠层结构钻削的有限元模型,并通过实验获得的轴向力、缺陷类型验证了模型的正确性。研究结果表明,当钻削顺序为CFRP→TC4时,CFRP入口处产生以撕裂型为主的入口分层,CFRP出口处未产生明显的推出分层,但在钻头的持续旋转作用下形成界面分层;当钻削顺序为TC4→CFRP时,当钛合金待切削层厚度较低时,轴向推力超过CFRP层间界面结合强度时产生界面相失效,TC4→CFRP的界面损伤比CFRP→TC4更加严重;TC4→CFRP主要形成以张开型、滑开型裂纹扩展为主的推出分层。  相似文献   

17.
CFRP/TC4叠层板的钻削实验   总被引:1,自引:1,他引:0  
采用硬质合金麻花钻对碳纤维复合材料-钛合金叠层板进行钻削试验,分析了钛合金层加工参数对刀具磨损的影响和刀具磨损机制。刀具磨损对孔入口处最大撕裂长度的影响。结果表明:磨损的主要区域是横刃和后刀面,前刀面磨损不明显。钛合金层的低转速和低进给量可以降低刀具磨损;此外随着钻孔数的增加,钛合金层转速越低、进给量越大碳纤维复合材料孔入口处孔质量更好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号