首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
压气机引气系统典型减涡器减阻特性对比分析   总被引:1,自引:1,他引:0       下载免费PDF全文
为对用于压气机引气系统的典型减涡器结构的减阻特性进行对比,采用数值模拟与试验研究相结合的方法对带三种典型减涡器的径向内流共转盘腔模型开展研究,并与无减涡器共转盘腔基准模型进行了对比。模型试验验证了数值模拟方法的可靠性,通过数值模拟,分析了各模型流场结构、速度分布、哥氏力分布和压力损失特性,对典型减涡器的减阻特性有了更深入的认识。结果表明:虽然三种典型减涡器结构差异较大,通过布置不同结构的减涡器,降低或抑制了共转盘腔内旋流比的增长速度和幅度,显著降低了压气机引气系统径向内流共转盘腔的压力损失,获得相近的减阻效果。与基准模型相比,在计算模型进出口截面间,去旋喷嘴式减涡器模型压力损失降低了73.4%;管式减涡器模型压力损失降低了80.7%,翅片式减涡器模型压力损失降低了84.5%。  相似文献   

2.
反旋进气混合式减涡结构流动特性数值计算   总被引:3,自引:2,他引:1  
提出了一种将反旋进气孔与减涡管相结合的混合式减涡器,数值研究了其减阻引气效果,分析了旋转雷诺数、无量纲入口质量流量对内部流场结构和压力损失的影响。研究发现:在混合式减涡器引气结构中,静压沿径向平缓降低,在周向分布均匀;随着无量纲入口质量流量或旋转雷诺数的增加,引气结构总压降呈现单调上升的趋势,其中在高旋转雷诺数、低无量纲质量流量工况下具有突出的减阻性能,其对应的湍流参数为0.106 4~0.324 5。相比于简单盘腔,反旋进气孔式及管式减涡器的压力损失分别降低62.5%、60.5%,混合式减涡器可降低80.4%,体现出良好的减阻引气效果。   相似文献   

3.
为了探索翅片-管复合式减涡器盘腔内径向内流总压损失及温降特性的分布规律,对简单盘腔、管式减涡器、翅片-管复 合式减涡器3种模型在不同转速、不同工况下的流场结构、总压损失分布规律及温降系数进行了数值模拟。结果表明:翅片-管复 合式减涡器能明显减小盘腔内的旋流比,提高气流径向引气效果,从而提高引气品质,其温降效果和减阻性能均优于管式减涡器 和简单盘腔的。管式减涡器与简单盘腔相比,其温降效果提高约54.3%,减阻效果提高约64%;翅片-管复合式减涡器与管式减涡 器相比,其温降效果提高约3%,减阻效果提高约40%。翅片-管复合式减涡器的整体性能最优,具有较高的工程应用价值,其研究 结果对压气机二次空气系统设计具有一定的指导意义。  相似文献   

4.
侯晓亭  王锁芳  张凯  夏子龙 《推进技术》2020,41(9):2059-2069
为了降低压气机径向引气过程中的压力损失,在设计出新型翅片单元结构的基础上,研究了新型翅片单元结构对径向引气压力损失的影响规律,对不同转速、新型翅片结构的去旋系统开展了数值研究,得到了不同工况下压气机共转盘腔径向引气的流场结构及压力损失分布曲线。研究结构表明:新型翅片单元结构能够抑制盘腔内气流旋流比,降低引气压力损失;翅片单元通道宽度和高度均存在最佳值使得减涡器减阻效果较好,在优选结构翅片单元通道宽度L=0.78,通道高度R3=0.97的条件下,其减阻效果较简单盘腔模型提高86.5%。高低翅片结构能起到较好的减阻效果,随着单侧翅片高度的升高减阻效果逐渐增强,在本文结构下增加单侧翅片高度L1=0.3时减阻效果最优,且A侧或B侧翅片增加带来的减阻效益相同。一方面,最优高低翅片结构其减阻性能相比于简单盘腔模型、典型翅片式减涡器模型以及翅片单元通道宽度L=0.78,通道高度R3=0.97的结构模型分别提高87.5%,29%,7.8%;另一方面,最优高低翅片结构能够减轻翅片单元的质量,具有较高的工程应用价值。  相似文献   

5.
导管长度对管式减涡器流阻与温降特性影响   总被引:1,自引:0,他引:1       下载免费PDF全文
采用数值模拟与模型试验研究相结合的方法对管式减涡器开展研究,分析了导管长度对管式减涡器各截面间压力损失系数、温降系数及其权重的影响。通过模型试验验证了数值模拟方法的可靠性。研究结果表明:增大导管长度可以显著降低管式减涡器压力损失的同时提高其温降。共转盘腔和导管是管式减涡器流阻与温降特性的主要影响因素,两者权重此消彼长。增大导管长度时,通过牺牲导管内压力损失和降低共转盘腔内压力损失以降低管式减涡器压力损失。快速增大的导管内温降是管式减涡器温降系数提高的主要原因。与光滑共转盘腔模型相比,当导管长度L/b=0786时,管式减涡器压力损失系数降低了8370%,温降系数提高了4502%。  相似文献   

6.
为了探索管-隔板复合式减涡器结构对共转盘腔径向内流流阻特性的影响规律,对不同转速、管-隔板复合结构下的去旋系统展开了数值研究,得到了不同工况下径向内流共转盘腔的流场结构、总压损失以及沿程总压损失分布曲线。研究结果表明:相对于基础管式减涡器,管-隔板复合式减涡器可以明显降低盘腔内的总压损失。管式减涡器盘腔上游安装隔板的减阻效果要优于盘腔下游安装隔板的减阻效果,且上游隔板和下游隔板存在最佳无量纲长度为0118和0065,与基础模型相比,最佳减阻效果分别提高17%和5%。在最佳隔板长度下,管式减涡器上、下游同时安装隔板的减阻效果最好,相比于基础模型,减阻性能提高19%。  相似文献   

7.
旋转盘腔去旋系统数值模拟   总被引:8,自引:0,他引:8  
对带有管式减涡器的盘腔内流动特性进行数值模拟,研究了减涡管的长度、管径和引气鼓筒孔的外形及尺寸,对盘腔内压力损失、流动结构的影响。计算结果表明:管式减涡器对于降低引气气流的压力损失有显著作用,存在最佳的减涡管长度使得引气的压力损失最小;减涡管管径、鼓筒孔面积增大都会减少流动损失;在鼓筒孔面积一定的情况下,长圆形鼓筒孔的性能比圆形鼓筒孔的更优。  相似文献   

8.
数值研究不同的减涡管长度、鼓筒孔周向位置及鼓筒孔结构对管式减涡器系统减阻性能的影响。结果表明,特定工况下存在最优管长使得系统进出口总压比最小,不同管长减涡管系统的主要压力损失来自于不同部分。其中,减涡管较短时压力损失主要来自于减涡管入口处,减涡管较长时压力损失来自于管内摩擦损失。鼓筒孔周向位置对盘腔内气流流动特性的影响较小,对总压比的影响可以忽略。鼓筒孔结构对减阻效果的影响较大。在所研究的三种鼓筒孔结构中,鼓筒孔开孔在周向上越长其总压比越小,鼓筒孔变为贯通缝时最优管长减小。  相似文献   

9.
减涡管出口角度对去旋系统特性影响数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
针对带管式减涡器的径向内流共转盘腔结构,为了研究导流管出口角度对盘腔内流场结构、压力损失的影响规律,数值模拟了不同转速和出口角度下的盘腔内部流场,获得了不同工况下的总压损失分布柱状图。结果表明:在相同转速下,直管式与60°弯管式减涡器降低压力损失的效果相近,90°弯管式降低压力损失的效果最好,30°弯管式降低压力损失的效果最差;在所有转速下,压力损失随出口角度的变化分布存在1个最高点;增加转速,压力损失总体减小。  相似文献   

10.
翅片安装高度对共转盘腔减阻特性影响的数值研究   总被引:1,自引:1,他引:0       下载免费PDF全文
为了探索翅片安装高度变化对共转盘腔径向内流总压损失的影响规律,对不同转速、翅片径向安装高度下的去旋系统展开了数值研究,得到了不同工况下径向内流共转盘腔的流场结构及总压损失分布曲线。研究结果表明:翅片安装高度能够影响盘腔内部旋流比分布情况,翅片吸力面流体的旋流比大于压力面侧;随着翅片安装高度的升高,减涡器的总压损失先减小后增大;在所研究工况及结构参数下,翅片下端径向高度与盘腔高度比值为0.476时减涡器的减阻效果最好,压力损失系数降低16%左右;在一定条件下,翅片式减涡器总压损失主要集中在翅片所在盘腔分区;翅片上端和下端盘腔分区总压损失对减阻性能的影响起决定性作用,且上端的影响大于下端的影响。  相似文献   

11.
轴流压气机转子叶尖间隙流动结构的数值研究   总被引:3,自引:0,他引:3  
张晨凯  胡骏  王志强  高翔 《航空学报》2014,35(5):1236-1245
为进一步加深对轴流压气机转子叶尖间隙内泄漏流/涡流动结构的认识,针对某台用于高压压气机低速模拟的四级重复级大尺度轴流压气机上的转子,采用定常数值方法开展了详细的研究。首先用已有的试验结果校核了计算方法的可靠性,随后研究了设计点工况下端区复杂流动结构和流动损失的机理,最后比较了无叶尖间隙和不同叶尖间隙大小的轴流压气机转子端区流动结构的差别,以及设计点和近失速情况下叶尖泄漏涡结构、泄漏流/主流交界面、端壁堵塞以及端壁损失的区别。结果表明,在62.5%间隙高度以下的叶尖区域内,从前缘叶尖间隙流出的流体会卷吸成叶尖泄漏涡,且随间隙高度的增加其占据的叶尖泄漏涡的位置由内而外;而在62.5%间隙高度以上,从转子前缘间隙内流出的流体不会卷吸成叶尖泄漏涡,随间隙高度的增加流动受叶尖泄漏涡的影响越来越小,更易出现二次及多次泄漏,且所占据的弦长范围也更宽广;设计状态下,叶尖泄漏涡在向下游发展的过程中会逐步膨胀,并与主流强烈掺混,无量纲流向涡量迅速减小,但无量纲螺旋度值显示其仍能保持集中涡的特征。  相似文献   

12.
圆管型与叶栅型去旋喷嘴流动对比分析   总被引:1,自引:1,他引:0       下载免费PDF全文
为了探索喷嘴结构优化对盘腔内流阻特性的影响规律,分别对去旋角度为28°的直叶栅与扩口叶栅型喷嘴下的径向内流共转盘腔在不同转速下开展数值研究,并与圆管型喷嘴作对比。获得了三种结构不同工况下的流场结构、旋流比与相对总压分布图及总压损失分布曲线。研究结果表明:随着转速增大,叶栅型与圆管型喷嘴总压损失系数的变化趋势一致;直叶栅与扩口叶栅的系统总压损失系数均比圆管显著降低40%与27%以上;直叶栅与扩口叶栅喷嘴内的流场结构相似,喷嘴总压损失系数相近,且都随转速增大而缓慢减小。  相似文献   

13.
航空发动机燃油雾化特性研究进展   总被引:3,自引:2,他引:1       下载免费PDF全文
严红  陈福振 《推进技术》2020,41(9):2038-2058
从实验、理论和数值模拟三个方面对航空发动机内的燃油雾化问题研究进展进行了综述。实验方面,通过雾化实验,可定性分析喷注参数及环境条件等因素对雾化效果的影响,测量技术是影响实验精度的关键;雾化理论对液膜形状及破碎特性的预测值与实验还存在一定误差,复杂气动条件下的雾化理论还较为缺乏;雾化数值模拟可以获得不同形式燃油雾化的某些典型变化过程,复杂多过程、多因素影响的雾化模拟还较难开展。总体上看,航空发动机燃油雾化机理还未能完全揭示。  相似文献   

14.
高压比离心压气机二次流旋涡结构研究   总被引:1,自引:1,他引:0       下载免费PDF全文
康达  钟兢军  徐毅  刘志杰 《推进技术》2019,40(10):2243-2251
为揭示高压比离心压气机的流动特性,采用数值方法对高压比离心压气机的旋涡结构和流动损失的产生及演变规律进行了研究。根据不同类型旋涡的具体特征,给出了分别适用于受迫涡和自由涡的二次流识别方法,包括截面旋线法和拟定主流的截面流线法。应用给出的二次流识别方法并结合耗散函数,探讨了压气机内旋涡的形成机理以及旋涡与损失的关联性。研究表明:当涡量与截面法矢量夹角的余弦值大于零时,旋线方向与实际气流方向定性一致,否则相反;旋线显示的涡轴方向与截面法矢量夹角大于90°时,识别出的旋涡不存在;刮削涡和泄漏涡既是低能流体的聚集区也是能量的耗散区,是影响离心压气机损失产生及分布的关键因素;诱导轮尾迹会抑制导风轮流道内叶表通道涡的形成。  相似文献   

15.
为提高径向预旋系统温降减少系统的流动损失,运用数值模拟方法对比分析不同长宽比的狭缝型接受孔及传统直孔型接受孔对预旋系统温降流阻特性的影响。结果表明,随着狭缝长宽比在1~10范围内增加,接受孔有效流通面积增大,喷嘴出口气流流速及系统无量纲质量流量均增大;当旋转雷诺数大于2.6×106时,系统温降随着狭缝长宽比的增加而增加,总压损失随之先增加后趋于稳定。长宽比为6~10的狭缝型接受孔较传统直孔型接受孔有更高的温降及较高的压力损失。当旋转雷诺数等于7.9×106,长宽比为10的狭缝式接受孔较传统直孔接受孔系统温降系数增加36.7%,总压损失系数增加2.2%。  相似文献   

16.
通过数值方法研究了由2级风扇、4级高压压气机及外涵组成的紧凑压缩系统的气动性能.探讨了双涵双轴压缩系统气动性能的评估方法及数值计算中相应的边界给定方法.通过对紧凑压缩系统的一体化数值模拟,分别获取了风扇及高压压气机的设计转速特性,并与设计值进行了对比,结果表明流量、压比、效率都达到了设计要求,而风扇失速裕度仅为7.8%...  相似文献   

17.
使用CFD仿真分析的方法,研究了带有导流管式减涡器的盘腔内空气流动和损失特性,重点阐明了导流管的减阻机理,特别是不同结构下管口处的流动与局部损失特性,并提出了一个数学模型来预测导流管盘腔内的压力。研究表明:管口处的流动及损失特性与管口之前的流动状态密切相关,且管口处发生的静压损失不容忽视,约占具整个盘腔损失的11%;合适的导流管长度可以有效的改善管口处的损失,在当前研究工况下具有最佳导流管长度的结构可以降低约25%的管入口处局部压降,约10%的整体静压降;建立了可以精确计算盘腔内压力分布的数学模型,模型计算结果与CFD结果相比平均误差约为53%。   相似文献   

18.
To discover the characteristic of separated flows and mechanism of plasma flow control on a highly loaded compressor cascade, numerical investigation is conducted. The simulation method is validated by oil flow visualization and pressure distribution. The loss coefficients, streamline patterns, and topology structure as well as vortex structure are analyzed. Results show that the numbers of singular points increase and three pairs of additional singular points of topology structure on solid surface generate with the increase of angle of attack, and the total pressure loss increases greatly. There are several principal vortices inside the cascade passage. The pressure side leg of horse-shoe vortex coexists within a specific region together with passage vortex, but finally merges into the latter. Corner vortex exists independently and does not evolve from the suction side leg of horse-shoe vortex. One pair of radial coupling-vortex exists near blade trailing edge and becomes the main part of backflow on the suction surface. Passage vortex interacts with the concentrated shedding vortex and they evolve into a large-scale vortex rotating in the direction opposite to passage vortex. The singular points and separation lines represent the basic separation feature of cascade passage. Plasma actuation has better effect at low freestream velocity, and the relative reductions of pitch-averaged total pressure loss coefficient with different actuation layouts of five and two pairs of electrodes are up to 30.8% and 26.7% while the angle of attack is 2°. Plasma actuation changes the local topology structure, but does not change the number relation of singular points. One pair of additional singular point of topology structure generates with plasma actuation and one more reattachment line appears, both of which break the separation line on the suction surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号