首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 77 毫秒
1.
振动鸭翼复杂流场测量   总被引:2,自引:1,他引:2  
研究鸭式布局飞机模型振动鸭翼对翼面涡流场的非定常干扰影响,进行了有无鸭翼、鸭翼不同偏角和不同振动频率,不同振动平均偏角及不同模型攻角下的主翼面涡流场静动态流动显示和翼面及立尾上压力分布测量。分析上述参数对主翼涡大小和强度、主翼涡位置和破散特性,压力分布特性的影响及其造成该现象的上下洗效应,涡系干扰和动态迟滞特性等复杂流动机理。  相似文献   

2.
基于高性能数值风洞,在低雷诺数下对前掠翼布局中鸭翼涡和主翼涡之间的干扰机理进行了研究,着重研究了前掠翼鸭式布局中鸭翼位置对纵向气动特性影响的机理,发现鸭翼和主翼之间的气动力干扰与相互的耦合作用在全机的升力特性和稳定性方面做出了很大的贡献。随着鸭翼的引入,可以从根本上改善主翼表面的流态,由它产生的自身脱体涡涡系对主翼涡系能够产生有利干扰,可以有效的控制边界层的气流分离。中小迎角时,其气动特性的提高主要取决于鸭翼和主翼的相互位置;而大迎角飞行时,则还与主翼和鸭翼自身产生涡系的强度、位置、破裂早晚以及相互的控制力有关等。并展开速度矢量图、空间流线图以及压力云图对其不同的气动布局和涡系进行了分析.  相似文献   

3.
一组近耦合鸭式布局的低速气动力数值模拟   总被引:1,自引:0,他引:1  
本文使用位流中前缘离体涡模拟的数值计算方法,对于不可压流动,大迎角情况下的气流流经一组近耦合鸭式布局的流动,进行了数值模拟。分析表明,在大迎角下,在一定的主翼-鸭翼的参数选择和位置配置下,鸭式布局的升力较之单独主翼为高的主要原因是因为鸭翼有推迟主翼离体涡破碎的作用,鸭翼离体涡在主翼翼面上形成的负压以及鸭翼离体涡流动造成的主翼流场的变化,也是提高主翼升力的因素。  相似文献   

4.
近耦合鸭式布局鸭翼展向吹气涡控技术数值模拟研究   总被引:1,自引:0,他引:1  
刘沛清  樊文博  曹硕 《飞机设计》2010,30(5):7-11,30
采用鸭翼展向吹气间接涡控技术,对后掠角为50°的主翼和鸭翼气动布局进行数值模拟,给出不同吹气动量系数下的数值模拟结果,建立了鸭翼吹气动量系数与布局气动力系数之间的关系。并针对该布局模型,将风洞测力、测压以及水洞流动显示试验结果与数值模拟结果进行了详细的分析比较,结果表明,对鸭翼实施展向吹气技术,确实可以延迟和控制主翼涡破裂、增大升力的效果,在大迎角下把鸭翼作为涡发生器对主翼进行控制是可行的,计算结果与试验结果定性上是吻合的,是可以模拟这种复杂流场的。  相似文献   

5.
本文依据在低速风洞所取得的测力、油流观察及旋涡测量结果,研究了前掠翼鸭式布局的鸭翼位置对气动性能的影响机理。研究表明,鸭翼位置对气动性能的影响是极为显著的。前掠翼鸭式布局大迎角性能的提高取决于鸭、主翼前缘涡的相对位置及其相互控制,也就是它们间的相互干扰。文中根据前掠及后掠鸭翼与主翼组合的实验结果,提出了采用鸭式布局时鸭、主翼应具有的平面形状及它们的相对位置。文中还对双前掠翼布局提出了一些看法。  相似文献   

6.
对40°前缘后掠角的主翼和40°前缘后掠角的鸭翼所构成的近距耦合鸭式布局简化模型进行了风洞测力、测压实验,系统研究了鸭翼展向脉冲吹气的增升效果,给出脉冲吹气频率以及脉冲宽度与布局升力之间的变化关系。测力结果表明,鸭翼展向吹气提高了该布局在大迎角时的升力,延迟了失速。测压结果表明,鸭翼展向脉冲吹气改善了中大迎角时主翼翼面流态,增加了翼面吸力峰值,延缓了涡的破裂。这说明利用鸭翼展向脉冲吹气涡控技术,可以直接改善鸭翼流场,继而间接改善主翼流场。  相似文献   

7.
采用CFD方法,研究鸭翼抑制边条翼布局俯仰非线性上仰的可行性。研究结果表明,边条翼布局具有复杂的多涡系旋涡流动结构,而导致俯仰非线性的主要因素是主翼涡的破裂。鸭翼对边条翼翼身组合体俯仰非线性上仰具有很强的抑制作用;鸭翼负偏度可提高鸭翼对俯仰非线性上仰的抑制能力,在更大迎角范围内对俯仰非线性具有明显的减缓作用。  相似文献   

8.
在亚临界流动范围内,对于带有鸭翼、机翼的翼身组合体,在其头尖部带有确定扰动的条件下,研究模型大迎角下的非对称背涡结构及其气动力特性随扰动周向角的演化规律。通过对模型表面的压力分布和侧向力分布分析,结合流场显示结果,表明翼身组合体绕流中鸭翼前各截面均处于非对称二涡区,头部截面侧向力分布随头尖部滚转而呈现出双稳态特性,鸭翼和机翼上方的流动在大迎角下处于完全分离流动状态,从而使得模型上鸭翼之后的截面侧向力接近为零。  相似文献   

9.
针对地效飞行器气动特性和纵向静稳定性这两个重要问题,应用数值模拟的方法对鸭式布局地效飞行器进行了研究。在鸭式布局中,主翼和鸭翼互相干扰,流场比较复杂。简化了地效飞行器模型,只考虑了主翼和鸭翼,通过改变鸭式布局地效飞行器中鸭翼相对主翼的位置和角度,分析其对气动特性和纵向静稳定性的影响。  相似文献   

10.
为了研究鸭式布局飞机的摇滚运动,设计了一种包括鸭翼、脊型前体、边条翼、主翼和垂尾的模型,进行滚转自由度释放、静态测力、动导数试验和烟线流场显示多种技术手段相结合的风洞试验。首先为了得到摇滚从发生到消失的全过程,进行了俯仰角范围为12°~52°、间隔1°测量的滚转自由度释放试验;结果表明对应于不同的俯仰角,鸭翼布局飞机的摇滚运动也具有不同的性质,其平衡点和运动形式均发生变化。接着静态测力和动导数试验证实:在翼体结构的多涡系影响下,摇滚可在零度平衡点和非零平衡点位置处发生;且运动可为极限环和非极限环形式。最后通过流场显示,分析了在不同迎角时鸭式布局飞机形成翼体摇滚的可能的流动机理。  相似文献   

11.
结合鸭式布局和机翼展向吹气的优点,采用鸭翼展向零质量射流间接涡控技术提高战斗机大迎角和过失速机动性能。其主要利用鸭翼涡与主翼涡之间的有利干扰,零质量射流直接增强鸭翼涡,同时间接增强主翼涡。本文利用低速风洞测力测压实验,研究展向零质量射流对近耦合鸭式布局增升影响规律。在不同雷诺数下,通过改变零质量射流的频率来揭示零质量射流与鸭式布局气动力之间的关系。本研究为新一代战斗机研制提供一定的技术储备。  相似文献   

12.
研究了转轴位置对机翼、机身和三个组合体上翼面的动态特性的影响,对于机翼和机身,当转轴位置后移时其动态迟滞效应更为强烈。当翼面处于转轴之前,上仰时会出现更为的动态迟滞效应。因此鸭翼达到失速状态较晚。而当翼面处于转轴之后时,如尾翼,将会更早地出现动失速,转轴位置对动态迟滞特性的影响可以认为主要是由于俯仰运动时的动态洗流影响所导致的实际有效迎角的变化。由此影响了动态分离涡及其发展。  相似文献   

13.
盒式翼布局带有前置鸭翼对飞机纵向力矩特性产生显著的影响。针对某盒式翼布局无人机,采用数值模拟方法研究鸭翼对盒式翼布局气动性能的影响,以及鸭翼安装角、鸭翼沿机身轴线的纵向位置和鸭翼面积对巡航状态下盒式翼布局气动性能的影响。结果表明:鸭翼可以提高盒式翼布局的最大升力系数和失速迎角,可以有效地调节纵向力矩,但是会使最大升阻比略微减小;在巡航迎角3°、巡航速度50m/s状态下,鸭翼安装角和鸭翼面积对盒式翼布局气动特性影响较大,而鸭翼纵向位置对盒式翼布局气动特性影响较小。综合考虑鸭翼的上述参数,可以显著提高盒式翼布局的气动性能。  相似文献   

14.
大迎角下鸭翼涡与边条涡的干扰特性   总被引:5,自引:0,他引:5  
 在风洞测力、水洞染色线和激光片光实验的基础上 ,对翼身组合体鸭翼边条翼布局大迎角涡系干扰机理进行了分析和探讨 ,揭示了该布局增升的机理。鸭翼涡位于机翼内侧 ,其与边条涡的相互诱导致使边条涡向外翼偏折 ,既改善了外翼的流态 ,又使机翼前缘涡量卷入边条涡 ,增强了边条涡的强度 ,从而延迟其破裂。两方面的共同作用 ,提高了主翼的涡升力 ,起到增升作用。  相似文献   

15.
基于前后掠鸭式布局的简化模型,通过求解雷诺平均N-S方程,模拟了前后掠鸭式布局的绕流结构,得到了不同布局下鸭翼的升力系数曲线.通过空间流线图,分析了单独鸭翼漩涡的发展特点,以及不同布局中鸭翼涡与机翼前缘涡的干扰机理.结果表明:在后掠翼鸭式布局中,鸭翼涡在大迎角时受到机翼前缘涡的有利干扰,增大了鸭翼的升力系数,提高了失速迎角;在前掠翼鸭式布局中,鸭翼的最大升力系数有所提高,失速迎角基本保持不变.  相似文献   

16.
郭耀滨 《航空学报》1990,11(12):528-533
 使用能单独测量鸭翼部分气动力的“鸭翼天平”及全机气动力天平,对一可组拆的鸭式布局模型进行了干扰气动力的实验研究。发现在α<20°时鸭翼与主翼间的干扰是不利的,使升力下降。α>32°时干扰变得有利。α=32°时干扰升力可占到总升力的24%。若主翼为前掠翼,构成鸭式布局的气动特性更好。  相似文献   

17.
钝头体窄条翼布局导弹在大攻角下拥有极为优异的纵向气动特性,但横向容易失稳,做快速机动时容易诱发非指令的横向不稳定运动。通过开展高速风洞自由摇滚试验和数值模拟,研究了窄条翼导弹自由摇滚特性和流动机理,试验与计算吻合较好。研究发现:较大迎角时,窄条翼面积中心距离尾舵前缘根部5~6倍直径时,模型会进入极限环摇滚,窄条翼位置对模型稳定性有显著的影响,去掉窄条翼或尾舵时,模型均不会进入摇滚;模型空间流场特性表明,气流经过窄条翼时形成的片涡,对背风舵产生强烈的干扰,抑制了尾舵涡的形成和发展,使背风舵动态失稳,导致模型进入极限环摇滚。  相似文献   

18.
超声速X形鸭翼-弹身组合体涡迹发展   总被引:1,自引:1,他引:0  
应用蒸汽屏方法研究超声速X形鸭翼-弹身组合体涡迹发展。观察了起源于鸭翼后缘的四个翼涡在横截面上形成的“蛙跃”和上反角二翼涡与弹身一对对称脱体涡形成的“混合式蛙跃”现象。在临近蛙跃距离时,有不稳定特性发生。文中还给出了细长体理论计算的涡迹路径跟实验数据比较,结果表明:如果各个旋涡的初始位置和相对强度适合,这种数学模型可计算导弹上的各个旋涡路径,二者存在的差别,可能是由于计算未能模拟涡面和涡量耗散的缘故。为了有助于理解导弹的气动特性,用少量的离散涡计算涡迹路径,作为工程估算是适宜的。  相似文献   

19.
鸭翼双三角翼流态及气动力特性研究   总被引:2,自引:1,他引:2  
本文给出了鸭翼对双三角翼气动特性及涡的发展和破裂过程的影响,进而分析了鸭翼位置、平面形状对全机气动特性影响的机理,并提出了合理的鸭翼双三角翼布局形式。  相似文献   

20.
韩冰  徐敏  李广宁  安效民 《航空学报》2014,35(2):417-426
采用Navier-Stokes方程与滚转运动方程耦合计算方法,比较研究了不同后掠角的双三角翼和翼身组合体的滚转运动特性,分析了机翼前缘后掠角及细长机身对非定常滚转力矩时滞环、动态流场结构和物面瞬时压力分布的影响。研究结果表明:主翼迎风面上的融合涡能量在80°/60°双三角翼上耗散较小,而在76°/40°双三角翼上耗散严重,这是造成两模型滚转力矩稳定性与时滞特性差异的主要因素;机身对气流的扰动作用,大幅增强了滚转力矩的线性分量;机身对气流的上洗作用,增强了边条涡与融合涡吸力及其时滞性,同时加剧了主翼背风面的两涡干扰;大滚转角时机身对横流流动的干扰,使得主翼背风面压力分布的时滞差异显著增加。该研究结果有助于认识后掠角与细长机身影响双三角翼滚转运动特性的物理机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号