首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
尹军飞 《推进技术》1992,13(2):41-45
对带有导流片的突扩燃烧室的冷态流场做了初步观察和测量。实验研究包括三个导流片的后缘角,纵向及横向位置各二个,共十三个结构的流场观测。研究结果表明:随叶片后缘角增加,回流区的长度明显减小,总压损失增加,而且叶片的位置和结构角对流场特征有一定的影响。因此,加导流片控制突扩燃烧室流场的方法是有希望的。  相似文献   

2.
吸附式压气机叶栅气动性能计算模拟研究   总被引:3,自引:1,他引:2  
周正贵  王传宝 《航空动力学报》2007,22(12):2036-2042
为考察附面层吸附技术在压气机静子势流区叶型上的应用,采用流场数值计算方法对吸气叶栅流场进行模拟.结果表明:(1)对于高亚声速压气机叶栅,采用吸力面附面层吸除可提高叶栅的扩压度,但不一定能减小流动损失.(2)对于中亚声压气机叶栅,采用吸力面附面层吸除不仅可提高叶栅的扩压度而且能减小流动损失.(3)如果叶片吸力面靠后缘处有流动分离,吸气位置在分离区的上游较远处可抑制分离,若在分离区附近可能不利于抑制流动分离.   相似文献   

3.
从叶片表面静压分布分析弯曲扩压叶栅的能量损失   总被引:1,自引:0,他引:1  
对常规直叶片、正弯曲叶片及反弯曲叶片组成的3种平面扩压叶栅的叶片表面静压和出口流场在-5°,0°,5°及10°四个攻角下进行了测量,并给出了叶片表面静压分布特性及出口流场的能量损失分布特性。本文试图从叶片表面静压分布来分析弯曲扩压叶栅的能量损失机理,探讨不同弯曲叶片在扩压叶栅中应用的变工况性能。  相似文献   

4.
端壁抽吸位置对大转角扩压叶栅流场及负荷的影响   总被引:5,自引:3,他引:2  
实验研究了低速条件下在端壁近吸力面处进行附面层吸除对某大转角扩压叶栅性能的影响.对叶栅出口截面参数和叶片型面静压进行了测量,并在叶片表面及端壁进行了墨迹流动显示.结果表明,端壁抽吸主要影响了吸力面/端壁角区,重新分配叶片根部负荷.在角区未发生分离的位置开始抽吸可有效推迟叶栅内的角区分离,降低损失,改善叶栅端区流动;而在角区已经发生分离的弦向位置开槽吸气则引起了局部回流,恶化了流场,增加了低能流体的掺混和气动损失.  相似文献   

5.
孔隙射流结构对扩压叶栅出口流场特性的影响   总被引:3,自引:1,他引:2  
实验研究带有孔隙射流结构的某大折转角直扩压叶栅在设计冲角下的出口流场特性,分析了不同孔隙射流位置对出口流场的影响.结果表明:在叶片表面开孔隙后,降低开孔隙的叶高处出口气流折转能力,使叶栅性能下降;孔隙射流使尾迹速度增加,相应的尾迹损失降低,尾迹区范围减小,同时出口气流角沿节距方向分布更加均匀,开孔位置越靠近叶展中部,孔隙射流对尾迹的影响越明显;开多孔方案对叶栅出口流场的影响要强于单孔方案.   相似文献   

6.
环形扩压叶栅流动非定常控制方法的PIV研究   总被引:2,自引:0,他引:2  
利用合成射流发生器对于一台环形扩压叶栅进行了流动主动控制的探索,发现适当的非定常激励方式可以使得环形叶栅的总压损失明显减小。同时利用二维粒子图像测速仪(ParticleImageVelocimetry,简称PIV)测量了扩压叶片绕流流场。获得了不同攻角下,在不同的激励频率和激励强度下,流场结构的变化。结果表明非定常激励可以使叶片绕流流场结构发生明显变化。在合适的非定常激励下,扩压叶片的叶背分离流动得到明显抑制,尾迹漩涡的强度和尾迹宽度均明显减小,流线分布比无非定常激励时更加平滑。实验结果能够与环形叶栅时均总压损失的变化相吻合。对于这一非定常控制方法的作用机理也进行了初步的分析。   相似文献   

7.
叶根开槽叶栅对角区分离的控制   总被引:1,自引:0,他引:1  
吸力面/端壁角区的分离是轴流压气机流场中固有的现象。本文采取在叶根处开槽的方法,利用压力梯度从叶片压力面向叶片吸力面引入一股射流增加分离区的能量,从而减缓分离。通过数值模拟的方法分析了在不同攻角下槽的位置、大小和形状对扩压叶栅性能的影响,计算结果初步表明,在非设计工况下适当位置、大小和形状的槽可以有效地减小角区分离。  相似文献   

8.
缝隙扩压叶栅近壁流场与流动损失实验   总被引:1,自引:0,他引:1       下载免费PDF全文
为了探索缝隙射流对高负荷扩压叶栅气动性能与近壁流场结构的影响机制,实验研究了设计冲角下有/无缝隙结构的高负荷弯曲扩压叶栅近壁流场结构与出口气动损失分布规律,获得了叶片近壁压力场数据、流动图谱以及叶栅出口流动损失参数.结果表明,缝隙两端压差导致的从叶片压力面到吸力面的射流能够增加附面层高熵流体的能量,缝隙射流将局部积聚的低能流体及时引向主流,减小高熵流体在叶展中部或端区掺混撞击,抑制了栅后尾迹高熵流体的过度聚集,从而有效提高高负荷压气机叶栅气动性能.  相似文献   

9.
为了研究风扇转子叶片在遭遇外物损伤后所造成的叶片型面形变对压气机性能的影响,针对前缘遭遇缺口损伤型的压 气机叶型开展数值仿真,分析了其整体气动特性及内部流场细节的变化规律。以某小型大涵道比涡扇发动机风扇转子叶片50% 截面叶型为研究对象建立了叶栅模型,假定叶栅中间截面遭遇了球体正向撞击,并在其前缘形成了深度为1.2%相对弦长、宽度为 2.5%相对叶高的表面缺陷。借助NUMECA Fine/Open软件包对前缘缺口型损伤风扇转子叶片50%截面叶型平面叶栅进行全通道 数值模拟,研究区域共计包含6个叶栅通道,定量分析了损伤前后叶栅的气动特性变化及内部流场结构。结果表明:在来流马赫 数为0.6下,前缘缺口型损伤在全攻角范围内增大了叶型总压损失系数,最大相对增大3.11%;扩散因子在前缘损伤后变大,最多 增大13.5%。  相似文献   

10.
为了研究主、次流的进口总压比及出口背压对前可变面积涵道引射器(FVABI)工作特性的影响与流动掺混机理,采用试验与三维数值模拟方法对不同进口总压比下引射器工作性能及掺混流场随背压变化规律进行了分析。结果表明:标准k -ε模型用于引射器掺混流场的模拟具有较好的准确性;进口总压比越大,引射器总压损失越大;进口总压比不变,随背压增加,引射器总压损失先减小后增加;进口总压比不变,引射器在背压变化过程中存在总压损失最小点;背压减小时,引射器存在临界工况点,且进口总压比越大达到临界工况点的背压越大,可变涵道比的范围变窄;主、次流掺混过程主要集中在沿气流方向上x/l=03~06位置之间,在黏性力作用下动量、质量充分交换,沿流向截面速度径向分布趋于均匀。  相似文献   

11.
液体火箭发动机推进剂泵诱导轮与离心轮的匹配   总被引:1,自引:0,他引:1  
杨宝锋  李斌  陈晖  刘占一 《航空学报》2019,40(5):122609-122609
为获得诱导轮离心轮周向匹配的时序效应对离心泵外特性以及压力脉动的影响规律,阐释相关作用机制,采用基于分离涡仿真(DES)的离心泵三维全流道数值仿真方法,引入熵产理论以及压力脉动强度系数等先进分析方法对不同匹配角度下离心泵内能量损失机制及压力脉动特性进行了研究。结果表明:离心轮诱导轮的时序效应对泵外特性有一定的影响,随着匹配角度的增加,扬程和效率均呈现先减小后缓慢增大的趋势,扬程变化为0.8%,效率变化为1.2%,其影响机制由不同匹配角度下叶轮通道分离涡、叶轮叶片尾迹以及靠近隔舌处扩压器通道回流涡变化决定;时序效应对离心轮扩压器动静干涉效应影响显著,当诱导轮叶片尾缘位于离心轮相邻主叶片中间位置时,能够有效消除3倍频成分,显著降低泵内压力脉动水平,其中动静干涉区域以及隔舌处扩压器叶片表面压力脉动平均降幅分别达到14.5%和16.7%。  相似文献   

12.
带90°弯管的离心压气机进口畸变数值研究   总被引:5,自引:1,他引:4  
采用数值模拟计算的方法研究了90°弯管对离心压气机进口流场产生的畸变,并对比了两种弯管在不同轴向位置时其内部流场的区别,分析了弯管所致的进口畸变造成压气机性能下降的原因。结果表明,弯管畸变对离心压气机性能的恶化程度与弯管所在位置有关,距离叶轮进口较远的弯管影响较大。与无弯管相比,弯管造成叶轮进口的流场紊乱。畸变引起压气机性能在大流量时有明显降低,在小流量时恶化程度较小。这是因为流量增大时,进口畸变的作用增强,可以一直发展到蜗壳入口,并与舌部引起的周向畸变联合作用导致压气机性能下降。流量减小时,进口畸变的影响会减弱叶轮流道中的损失,有利于保持近失速状态下的压气机性能。   相似文献   

13.
王凯  龚永祥  罗光钊  刘厚林  王玥  王航 《推进技术》2022,43(10):299-312
为揭示高速燃油离心泵内部空化形态及隔舌区域空化的发生工况,对其进行了非定常数值计算,分析了不同流量下高速燃油泵内空化流场特性及压力瞬态特性。结果表明:在不同流量下,空泡首先在叶片前缘生成;随着空化数降低,空泡在叶片根部及延伸叶片背面产生;在1.2倍设计流量下隔舌区域的空化在低空化数下发生;空化对叶片表面根部的压力载荷影响较大;叶轮流道监测点压力脉动主频为叶轮轴频;隔舌监测点脉动主频为叶频,在1.2倍设计流量下的低空化数下隔舌区域监测点压力脉动频谱上轴频倍频特征增强。  相似文献   

14.
针对某大型轴流风机设计了4种出口段轮毂匹配方案,采用数值模拟方法对比分析了4种方案下的风机特性和叶尖以及叶根流场结构.结果表明:出口轮毂形状的变化对该风机叶尖流场结构影响很小;该风机出口无轮毂时,在叶根区域出现约占20%叶高区域的分离流,损失严重,降低了工作效率;在相同的叶尖间隙下,风机效率随着出口轮毂扩压角的减小而提高;在风机出口增加一个匹配的平直轮毂或收缩轮毂可使叶根分离涡后移,分离区域减小至5%叶高以下,同时可使该风机效率至少提高2个百分点.  相似文献   

15.
基于自由变形技术的分流叶片形状优化设计   总被引:1,自引:1,他引:0  
基于自由变形技术(FFD)和计算流体力学(CFD)建立了离心压缩机叶片形状优化设计的方法,从而避免了对复杂的实体造型本身进行参数化,提高了优化效率。首先基于自由变形技术建立分流叶片外形的参数化表示,根据优化拉丁超立方试验设计方法构建控制点变化的样本空间,接着通过CFD数值仿真获得各样本的性能参数并建立响应面分析法(RSM)模型,以压缩比与等熵效率最大化目标构建多目标优化模型,进一步采用最小偏差法转化为单目标优化模型并进行求解,最后分析比较了形状优化对压缩机性能和流道内流体流动的影响。结果表明形状优化后压缩机的压缩比提升0.46%,等熵效率提升0.84%,同时减少了流道内低速区域,降低了流动损失。   相似文献   

16.
透平机械叶片的遗传优化设计   总被引:17,自引:0,他引:17  
提出一个基于遗传优化理论的透平机械叶片设计方法。该方法以叶片形状作为优化对象,利用遗传算法通过使其表面边界层中流动损失的极小化来搜索最佳的叶片形状。叶片形状被参数化表示。已知叶片形状的流场分析由一个叶栅正命题CFD程序完成。方法应用于一个离心压缩机扩压器叶片设计。数值计算显示,该方法可成功地求得具有最小流动损失的扩压器叶片形状。  相似文献   

17.
静叶吸气对某轴流压气机裕度影响的研究   总被引:1,自引:0,他引:1  
运用Numeca CFD对某大弯度叶栅和某轴流压气机流动进行数值模拟,为减小由于边界层分离而带来的损失,拓宽稳定工作范围,提出叶片吸力面表面开缝抽气方案.综合研究开缝位置、开缝长度、及吸气量大小对流动分离结构和裕度的影响.结果表明通过静子叶片上边界层抽气引出分离区域的低能量气流,可以明显的改善气动性能,分离得到很好的抑制,稳定工作裕度得到了提高.   相似文献   

18.
一种基于CFD的叶轮机非定常气动力组合建模方法   总被引:3,自引:3,他引:0  
为了获得一个准确高效的非定常空气动力学模型并将其应用于叶轮机叶片颤振特性分析中去,论文发展了一种基于CFD方法的叶轮机非定常气动力组合建模方法,可以快速计算叶轮机叶片在等相角差振动时的气动阻尼系数。运用小扰动流场的叠加原理,通过不同通道数模型的非定常流场求解(通常需要两次或三次),针对流场的周期性边界条件,组合分析得到一系列更多通道数情况下的非定常气动力低阶模型。基于这种降阶模型计算的气动阻尼系数与直接的CFD方法计算结果吻合很好,计算效率提高10倍以上。  相似文献   

19.
将Lighthill方程转变为频域Helmholtz弱积分形式并采用Galerkin方法离散.基于声学有限元方法考虑声波在复杂固壁(叶轮和蜗壳)内的散射和反射等作用,利用Ffowcs Williams-Hawking(FW-H)方程耦合非定常流场计算结果数值预测了某离心风扇的噪声辐射,流场计算结果和蜗壳壁面动态压力测量结果在基频上吻合较好.结果表明:基频压力脉动分量在噪声源特性中占据主导地位且靠近叶轮前盖板对应位置的蜗舌区域(叶轮出口宽度范围内)是最主要的噪声源区域;声学有限元方法和实验吻合较好,复杂固壁对声传播影响不容忽略.叶轮出口不稳定气流对蜗壳周期性冲击引起的转/静干涉噪声远大于叶片偶极子源噪声是离心风扇最主要的噪声辐射分量且噪声主要从风扇管道出口方向传播.   相似文献   

20.
附面层抽吸对叶栅角区分离流动的控制研究   总被引:3,自引:3,他引:0       下载免费PDF全文
梁田  刘波  茅晓晨 《推进技术》2019,40(9):1972-1981
为研究附面层抽吸对叶栅角区分离流动的控制效果和机理,以高负荷轴流压气机叶栅为研究对象,基于数值方法深入分析了不同抽吸方案对叶栅角区流场的影响以及叶栅攻角特性随抽吸流量组合的变化规律。结果表明:不同抽吸方案对叶片通道中的分离流动的控制机理不同,进而会影响叶片负荷及扩压能力;将吸力面抽吸与端壁附面层抽吸结合起来的组合抽吸方案基本消除了位于叶栅吸力面的附面层分离和角区分离,叶栅叶型损失系数显著降低,在5°攻角下,当吸力面抽吸量为1.88%,端壁抽吸量为0.82%时,损失系数相较于原叶栅降低约63.8%;并且进一步研究发现各抽吸槽的抽吸流量均存在其最佳临界值;在进行组合抽吸时,应针对不同攻角工况,在其相应的临界值范围内选择合理的抽吸流量,以达到用较小的吸气量实现对叶栅分离流动的控制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号