首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了研究旋翼下降和涡环状态的流场及气动特性,在中国空气动力研究与发展中心Φ5m立式风洞中,完成了BO-105直升机桨尖马赫数相似旋翼模型的流场和测力试验。试验获得了旋翼悬停和垂直下降状态桨盘附近的流场,同时测量得到了模型旋翼拉力、扭矩等参数的变化。试验结果表明:高速粒子图像测速法(PIV)相机成功捕捉到了下降率增大时旋翼涡量向桨盘附近聚集的过程。垂直下降率在0.9左右时旋翼拉力和扭矩最小,分别只有对应总距角悬停状态拉力的60%和80%左右。在深度涡环状态,旋翼周围存在大尺度涡结构周期性形成和破碎现象,这种现象是旋翼拉力和扭矩剧烈波动的原因。斜下降相对垂直下降而言,旋翼的拉力和扭矩损失都较小。抛物线桨尖外形与常规的矩形桨尖外形相比,垂直下降气动特性并无显著区别。   相似文献   

2.
多旋翼飞行器涡环状态数值模拟   总被引:2,自引:1,他引:1  
旋翼类飞行器在进入涡环状态时极易发生安全事故。采用基于非结构网格的滑移网格技术对多旋翼飞行器的气动特性进行了数值模拟,并进行了试验验证。分别模拟了多旋翼飞行器垂直下降状态和30°斜向下下降状态时的流场,得到该状态下多旋翼飞行器的气动特性和滑流区流场规律,并分析了力与功率的变化规律。研究发现:多旋翼飞行器在垂直下降状态和30°斜向下状态均会进入涡环状态,在垂直下降速度为4 m/s时,多旋翼飞行器已经处于涡环状态,旋翼的拉力损失会达到15%,旋翼功率随下降速度的增大先增大后减小,且不同旋翼拉力大小和功率大小不一致。当30°斜下降速度为4~6 m/s时,多旋翼飞行器处于涡环状态。该结论可为多旋翼无人机的安全飞行提供参考。  相似文献   

3.
前飞状态旋翼尾迹测量试验研究   总被引:2,自引:0,他引:2  
利用PIV技术,测量前飞状态旋翼尾迹的横向速度分布及桨尖涡在横向剖面里的运动轨迹,得到了前飞状态旋翼两侧的尾迹边界及桨尖涡在运动过程中的耗散特性等,研究了风速及拉力系数对前飞状态旋翼尾迹和桨尖涡运动轨迹的影响。结果表明:前飞状态下,旋翼左右两侧尾迹的涡量值基本相当。旋翼尾迹沿径向急剧收缩,沿垂向逐渐下降,下降高度与流向距离几乎呈线性关系。风速、拉力系数的变化对桨尖涡及其运动轨迹有显著的影响。获得的测量结果为开展旋翼流动机理研究及提高CFD分析精度提供了试验依据。  相似文献   

4.
孙文胜  林明 《飞行力学》2003,21(1):21-23
利用部分旋翼涡环状态试验数据,采用神经网络误差反向传播算法(BP 算法),研究了桨叶负扭度对直升机涡环状态特性的影响问题,分析了负扭度变化对旋翼扭矩,拉力平均值及脉动幅度的影响,模拟结果表明,使用该模型可准确预测桨叶负扭度对直升机涡环状态的影响,从而减少试验次数,节约试验费用。  相似文献   

5.
直升机涡环状态试验数据处理研究   总被引:1,自引:0,他引:1  
采用神经网络误差反向传播算法,以旋翼涡环状态试验数据为基础,研究了桨叶负扭度对直升机涡环状态特性的影响,分析了负扭度变化对旋翼扭矩、拉力平均值及脉动幅度的影响。计算结果表明,神经网络模型能够准确预测桨叶负扭度对直升机涡环状态的影响。  相似文献   

6.
首先对模型试验直升机和实飞直升机下滑角进行了对比,明确了桨盘倾角是使理想涡环曲线存在误差的主要原因,分析了斜下滑时直升机各姿态角随前飞速度增大的变化趋势,结合平衡方程和高-辛涡环判据,提出了计入桨盘倾角的实飞涡环状态边界计算方法,最后通过算例对计算方法进行了验证和分析。结果表明,基于桨盘倾角修正的涡环边界与试飞数据基本吻合,桨盘倾角对旋翼涡环临界值影响较大,且影响程度因机型而异。  相似文献   

7.
从飞行试验角度介绍了直升机垂直下降飞行时的旋翼涡环特性,从空气动力学角度探讨了涡环形成的机理,分析了Wolkovitch判据、Peters判据以及高-辛判据等三种涡环判据的优点和不足。以直升机做放距阶跃飞行试验为例,得出了为避免直升机进入涡环的安全措施,并验证了高-辛判据的准确性和工程实用性。  相似文献   

8.
悬停状态旋翼尾迹边界测量   总被引:1,自引:0,他引:1  
介绍了用试验来定量确定悬停状态旋翼尾迹边界的方法,从物理本质分析了悬停状态旋翼尾迹的湍流特性,阐述了如何用热线风速仪来测量尾迹的湍流度并用湍流度来确定桨尖涡的位置和尾迹边界。揭示了悬停状态旋翼尾迹边界的一些特点,最后将试验结果与国外的相应研究结果作了比较,发现两者吻合得较好。  相似文献   

9.
刘正江  汪文涛  林永峰  曹亚雄 《航空学报》2020,41(12):124060-124060
旋翼桨-涡干扰(BVI)是直升机在进场和离场等近地飞行时后行桨叶切割前行桨叶脱落桨尖涡产生的气动扰动,该扰动不仅对桨叶表面压力载荷产生激励作用,同时也会引起旋翼噪声出现激增,旋翼噪声激增的主要成分为桨-涡干扰噪声。本文首先对斜下降桨-涡干扰状态桨叶表面载荷进行数值计算;然后分别阐述了基于改进整周期同步平均旋翼噪声去噪方法、基于多层小波包分解的桨-涡干扰声源识别和分离方法以及基于bartlett时延计算和球面插值的声源定位方法,设计并开展了风洞斜下降状态桨-涡干扰桨叶表面压力和声源定位试验,给出了开发的声源定位软件界面、声源定位图像畸变校准方法及声阵列现场校准方法;最后对比分析了不同试验状态的桨-涡干扰噪声声源特性以及和桨叶表面压力之间的关联性,并给出了声源定位及表面压力试验数据分析结果。结果表明典型斜下降状态后行侧桨-涡干扰主要出现在方位角310°~330°、径向位置1.6~1.8 m桨盘平面区域。  相似文献   

10.
倾转四旋翼飞行器垂直飞行状态气动特性   总被引:2,自引:1,他引:1  
综合采用基于滑移网格技术的计算流体力学(CFD)方法与悬停状态气动干扰试验方法,对倾转四旋翼(QTR)飞行器垂直飞行状态的流场进行模拟与试验,研究飞行器垂直飞行状态气动特性以及部分参数对气动特性的影响。结果表明:倾转四旋翼飞行器在垂直飞行状态,前后旋翼之间干扰不明显,但旋翼与机翼的干扰明显;旋翼旋向对旋翼与机翼的干扰不同,右旋时,机翼气动力占旋翼拉力的15%,左旋时占旋翼拉力的9%;飞行器在垂直运动过程中,会引起在前飞方向的分力和低/抬头力矩变化;飞行器在垂直下降过程中,旋翼会进入涡环状态,机翼的存在有效降低了涡环状态的破坏作用,涡环降低气流对机翼翼尖冲击作用。该结果有助于飞行器的设计与安全飞行。   相似文献   

11.
魏鹏  史勇杰  徐国华 《航空学报》2013,34(7):1538-1547
针对影响旋翼流场求解精度的关键因素“桨叶复杂近体流动”和“尾迹涡畸变”,结合计算流体力学(CFD)方法和黏性涡方法,发展了一套适合于复杂旋翼涡流场分析的耦合欧拉-拉格朗日数值方法:为捕捉桨尖三维效应、激波等细节流场特征,在桨叶近体区域采用CFD方法对其进行求解;针对高雷诺数旋翼流场中桨尖涡的紧凑结构特点,引入黏性涡方法建立了高分辨率的尾迹求解模型;两计算域间的信息交换采用了集中涡源法和边界修正法.应用所建立的计算方法,以旋翼CFD标准验证试验(Caradonna-Tung旋翼)为算例,对尾迹影响明显的悬停状态进行了数值模拟,通过对比耦合边界处流场特征及桨叶表面压力系数分布,验证了方法的有效性.此外,还从旋翼尾迹捕捉精度、涡量耗散特征及计算时间等方面对不同计算方法进行了对比分析,结果表明耦合方法可充分发挥CFD和黏性涡方法各自的优点,在旋翼流场数值模拟方面具有独特的优势.  相似文献   

12.
直升机涡环状态和改出   总被引:1,自引:0,他引:1  
陆洋  高正 《国际航空》2002,(3):48-50
涡环状态是直升机在下降或下滑飞行阶段一种固有的危及飞行安全的危险状态。它会导致直升机操纵失灵,在颠簸下跌中坠地失事,在我国也发生过多起这类事故,因而涡环边界的确定是保证直升机飞行安全的重要措施。本文介绍了国外直升机涡环状态及其边界的理论和试验研究现状,并重点介绍了我国对此问题的研究和我国学者如何通过模型试验及理论计算,结合飞行试验,得到了比国外的研究更为实用的直升机涡环状态边界的情况  相似文献   

13.
针对直升机在近水面区域飞行时的旋翼气动特性问题,基于RANS方程,结合流体体积(VOF)方法开展了旋翼水面效应流场的模拟分析研究。为提高水/气交界面的旋翼桨尖涡的捕捉精度,在背景网格区域采用了自适应网格方法,并通过与Caradonna-Tung旋翼试验结果的对比,验证了所提方法的可靠性。随后,基于该方法模拟了旋翼在地面、静水面、小幅波浪水面和大幅波浪水面4种工况下的地面/水面效应流场,对不同状态下的旋翼气动特性及水面干扰机理进行了细致讨论。结果表明:地面效应及水面效应下,旋翼桨尖涡更早向外扩散且桨叶中段的表面压强增幅比桨尖处更大,水面效应的强度要弱于地面效应;而波幅更高的波浪所引发的附着涡更容易改变桨尖涡的发展轨迹,增加桨尖涡的不对称性。  相似文献   

14.
涡环对直升机的飞行安全具有很大的危害,直升机在陡下滑机动过程中可能会进入涡环状态.通过对滑流理论的修正,得到了适用于涡环状态的直升机旋翼诱导速度计算模型.以此为基础,进行了直升机涡环状态的实时仿真研究,给出了直升机进入涡环后典型的响应特征.仿真结果与试验/试飞结果具有良好的一致性,说明所建模型准确、可靠.  相似文献   

15.
直升机旋翼对尾桨非定常气动载荷的影响   总被引:2,自引:0,他引:2  
谭剑锋 《航空学报》2015,36(10):3228-3240
悬停和侧滑状态的直升机主旋翼桨尖涡将穿透尾桨桨尖平面,由此导致尾桨非定常气动载荷发生明显变化。为更准确地模拟由主旋翼/尾桨干扰产生的尾桨非定常气动载荷变化,通过在面元压力项中增加由旋翼桨尖涡诱导的时变项,体现旋翼桨尖涡速度和几何时变对桨叶非定常压力的影响,同时采用涡面镜像法修正涡粒子法的黏性项,确保桨叶附近区域旋翼涡量守恒,建立旋翼尾迹对尾桨叶的非定常气动干扰模型,并耦合面元/黏性涡粒子法,构建直升机主旋翼/尾桨干扰下的尾桨非定常气动载荷分析方法。通过计算AH-1G旋翼桨叶非定常气动载荷特性,并与实验测量值、计算流体力学(CFD)计算结果对比,验证本文非定常气动干扰模型的有效性。随后基于NASA ROBIN(Rotor Body Interaction)模型分析悬停、侧风和60°右侧滑状态主旋翼对尾桨非定常气动载荷的影响,分析表明主旋翼尾迹对尾桨非定常气动载荷影响显著。悬停状态的主旋翼/尾桨干扰导致尾桨拉力平均值下降、非定常气动载荷显著增加;左侧风状态,主旋翼/尾桨干扰削弱尾桨"涡环"程度,显著增加尾桨拉力和非定常气动载荷;60°右侧滑状态,主旋翼/尾桨干扰导致尾桨拉力损失最大,且在低速侧滑状态出现尾桨拉力"迅速恢复"现象,尾桨非定常气动载荷幅值迅速增加。  相似文献   

16.
刚性旋翼高速直升机旋翼间复杂的尾迹干扰作用会影响其配平特性。针对这一问题,本文采用黏性涡粒子方法来精确计算上下旋翼复杂尾迹流场下的诱导速度,桨叶环量则采用涡面元法进行求解,两种方法耦合建立了尾迹模型。基于此尾迹模型进行高速直升机飞行动力学建模,包括结合刚性旋翼挥舞运动模型和变距操纵模型的旋翼尾迹气动力建模、机身以及平/垂尾气动力建模。同时与风洞试验结果对比,先验证了旋翼气动力模型的准确性,在此基础上,以XH-59A直升机为研究对象,计算得到了0~80m/s速度下的配平特性结果,与飞行试验数据对比良好,验证了飞行动力学模型的有效性。最后分析了悬停及低速前飞时旋翼间尾迹流场干扰对全机配平特性的影响。  相似文献   

17.
谭剑锋  周天熠  王畅  于领军 《航空学报》2019,40(6):122602-122602
地面对旋翼气动特性影响明显,且导致旋翼流场更加复杂。为分析地面效应下的旋翼桨尖涡和流场变化特性,基于涡面和无滑移边界条件,求解第2类Fredholm方程获得地面涡面矢量分布,且将涡面矢量按涡扩散方程扩散到流体中,建立考虑黏性效应的地面气动模型,并耦合非定常面元/黏性涡粒子混合法以体现旋翼桨叶气动特性和旋翼尾迹的非定常效应,构建旋翼地面效应气动分析方法。通过计算Lynx尾桨地面效应下的性能和桨尖涡轨迹,并计算Maryland大学模型旋翼和NASA缩比旋翼地面效应下的垂向、径向速度分布,且与试验和CFD计算结果对比,验证了本文方法能较好捕捉地面效应下的旋翼尾迹变化特性和复杂速度场特性,且结果表明本文方法能较好模拟地面效应下旋翼桨尖涡的收缩、扩散、井喷、地面射流等物理现象。  相似文献   

18.
锯齿状桨尖旋翼悬停气动特性试验研究   总被引:3,自引:1,他引:3  
从仿生学角度出发,结合旋翼空气动力学特点,设计了一种全新的具有后缘锯齿桨尖的模型旋翼。定性分析了锯齿桨尖的桨尖涡,以及对旋翼气动性能、振动特性、气动噪声的影响。在旋臂机上分别对矩形、尖削、后缘锯齿桨尖的模型旋翼进行了悬停气动特性试验。试验结果表明,锯齿桨尖旋翼的悬停效率有显著提高,振动及噪声水平比另两种旋翼有明显降低。试验验证了分割离散桨尖涡思想的正确性和可行性。进一步的试验研究正在开展中。  相似文献   

19.
为充分考虑旋翼尾迹对流场的影响和减少尾迹的数值耗散,建立了一个基于Navier-Stokes方程/自由尾迹分析/全位势方程的旋翼流场求解的新的混合方法。该方法的求解域由三部分组成:一是围绕旋翼桨叶周围的粘性区域.采用可压Navier-Stokes方程来捕捉近场信息,包括激波及尾迹;二是离桨叶较远、粘性可以忽略的等熵流区域,以全位势方程来描述其流动;三是在无粘区域中嵌入自由尾迹模型,模拟桨尖涡从粘性区域进入势流范围的发展变化。为便于流场分区求解和信息传递,采用了嵌套网格方法,并给出了不同区域之间的信息传递方法。以两叶的Caradorma&Tung模型旋翼和四叶的UH-60A直升机旋翼为算例,计算给出了旋翼桨叶表面的压强分布以及桨尖涡的位置,并与可得到的试验数据及无尾迹模型方法的计算结果进行了对比,表明本文的混合方法能够很大程度地减少旋翼尾迹的数值耗散。  相似文献   

20.
通过数值模拟涡环的形成,进而采用基于涡环的随体坐标系下的流函数方法确定涡环的边界,分析不同形成时间(活塞冲程/活塞直径)涡环的物理特征参数(涡环的体积、半径、能量等参数)的变化。通过与实验结果和Slug模型的理论分析结果做对比,该方法能合理地确定涡环的边界和其它物理特征参数。进一步研究中发现当形成时间小于4(此时涡环发生夹止)时,涡环的涡核半径随形成时间的增加而增加,夹带能力在下降,而当形成时间大于4后,涡环的涡核半径不再进一步增加,并且夹带能力开始增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号